Unknown

Dataset Information

0

Dynamic membrane protein topological switching upon changes in phospholipid environment.


ABSTRACT: A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids.

SUBMITTER: Vitrac H 

PROVIDER: S-EPMC4653158 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic membrane protein topological switching upon changes in phospholipid environment.

Vitrac Heidi H   MacLean David M DM   Jayaraman Vasanthi V   Bogdanov Mikhail M   Dowhan William W  

Proceedings of the National Academy of Sciences of the United States of America 20151028 45


A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displa  ...[more]

Similar Datasets

| S-EPMC3677496 | biostudies-literature
| S-EPMC6202029 | biostudies-literature
| S-EPMC7897639 | biostudies-literature
| S-EPMC4398632 | biostudies-literature
| S-EPMC9515091 | biostudies-literature
| S-EPMC3889491 | biostudies-literature
| S-EPMC2903364 | biostudies-literature
| S-EPMC8131360 | biostudies-literature
| S-EPMC3190736 | biostudies-literature
| S-EPMC8416757 | biostudies-literature