Unknown

Dataset Information

0

Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model.


ABSTRACT: Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington's disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxifies drugs and metabolites through its excretory functions in the membrane compartment, thereby protecting cells against death or senescence. When they were treated with verapamil, R6/2 mice showed a progressive decline in rotarod performance and increased mHtt aggregation in the brain. Using neuronal stem cells from R6/2 mice, we developed an in vitro HD model to test mHtt accumulation in the nuclei of neurons. When MDR1 activity in cells was decreased by verapamil or siRNA, mHtt aggregation in the nuclei increased, whereas the induction of MDR1 resulted in a decrease in mHtt aggregation. Thus, our data provide evidence that MDR1 plays an important role in the clearance of mHtt aggregation and may thus be a potential target for improving the survival of neurons in Huntington's disease.

SUBMITTER: Im W 

PROVIDER: S-EPMC4653614 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model.

Im Wooseok W   Ban Jae-Jun JJ   Chung Jin-Young JY   Lee Soon-Tae ST   Chu Kon K   Kim Manho M  

Scientific reports 20151120


Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington's disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxi  ...[more]

Similar Datasets

| S-EPMC4718563 | biostudies-literature
| S-EPMC10562706 | biostudies-literature
| S-EPMC5658675 | biostudies-literature
| S-EPMC7459410 | biostudies-literature
| S-EPMC7511939 | biostudies-literature
| S-EPMC5717400 | biostudies-literature
| S-EPMC4186714 | biostudies-literature
| S-EPMC3049363 | biostudies-literature
| S-EPMC4067603 | biostudies-literature
| S-EPMC6458866 | biostudies-literature