An anthrax toxin variant with an improved activity in tumor targeting.
Ontology highlight
ABSTRACT: Anthrax lethal toxin (LT) is an A-B type toxin secreted by Bacillus anthracis, consisting of the cellular binding moiety, protective antigen (PA), and the catalytic moiety, lethal factor (LF). To target cells, PA binds to cell-surface receptors and is then proteolytically processed forming a LF-binding competent PA oligomer where each LF binding site is comprised of three subsites on two adjacent PA monomers. We previously generated PA-U2-R200A, a urokinase-activated PA variant with LF-binding subsite II residue Arg200 mutated to Ala, and PA-L1-I210A, a matrix metalloproteinase-activated PA variant with subsite III residue Ile210 mutated to Ala. PA-U2-R200A and PA-L1-I210A displayed reduced cytotoxicity when used singly. However, when combined, they formed LF-binding competent heterogeneous oligomers by intermolecular complementation, and achieved high specificity in tumor targeting. Nevertheless, each of these proteins, in particular PA-L1-I210A, retained residual LF-binding ability. In this work, we screened a library containing all possible amino acid substitutions for LF-binding site to find variants with activity strictly dependent upon intermolecular complementation. PA-I207R was identified as an excellent replacement for the original clockwise-side variant, PA-I210A. Consequently, the new combination of PA-L1-I207R and PA-U2-R200A showed potent anti-tumor activity and low toxicity, exceeding the performance of the original combination, and warranting further investigation.
SUBMITTER: Wein AN
PROVIDER: S-EPMC4653645 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA