ABSTRACT: The phenotypic and genetic similarities between Xiphophorus and human melanoma render Xiphophorus a useful animal model for studying the genetic basis of melanoma etiology. In the Xiphophorus model, melanoma has been shown to be inducible by ultraviolet light (UVB) exposure among interspecies hybrids, but not in parental line fish similarly treated. This leads to questions of what genes are responsive to UVB exposure in the skin of the interspecies hybrids, as well as how parental alleles in hybrids may be differentially regulated and the potential roles they may play in induced melanomagenesis. To address these questions, we produced X. maculatus Jp 163 B×X. couchianus (Sp-Couch) F1 hybrid fish, exposed both hybrid and parental fish to UVB, and performed gene expression profiling of the skin using RNA-Seq methodology. We characterized a group of unique UVB-responsive genes in Sp-Couch hybrid including dct, pmela, tyr, tyrp1a, slc2a11b, rab38a, rab27, tspan10, slc45a2, oca2, slc24a5, ptn and mitfa. These genes are associated with melanin production and melanocyte proliferation. They were also up-regulated in Sp-Couch hybrid, indicating that their UVB response is hybridization initiated. In the hybrid, several melanin production and pigmentation related genes, including slc45a2, tspan10, dct, slc2a11b and ptn showed either X. couchianus or X. maculatus allele specific expression. The finding that these genes exhibit allele specific expression regulatory mechanisms in Sp-Couch hybrids, but do not exhibit a corresponding UVB response in either one of the parental fishes, may suggest UVB targets and imply mechanisms regarding the susceptibility of Sp-Couch to induced melanomagenesis.