Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China.
Ontology highlight
ABSTRACT: The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations.We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation.Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (??=?0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene.Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.
SUBMITTER: Feng H
PROVIDER: S-EPMC4665908 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA