An Interdomain KCNH2 Mutation Produces an Intermediate Long QT Syndrome.
Ontology highlight
ABSTRACT: Hereditary long QT syndrome is caused by deleterious mutation in one of several genetic loci, including locus LQT2 that contains the KCNH2 gene (or hERG, human ether-a-go-go related gene), causing faulty cardiac repolarization. Here, we describe and characterize a novel mutation, p.Asp219Val in the hERG channel, identified in an 11-year-old male with syncope and prolonged QT interval. Genetic sequencing showed a nonsynonymous variation in KCNH2 (c.656A>T: amino acid p.Asp219Val). p.Asp219Val resides in a region of the channel predicted to be unstructured and flexible, located between the PAS (Per-Arnt-Sim) domain and its interaction sites in the transmembrane domain. The p.Asp219Val hERG channel produced K(+) current that activated with modest changes in voltage dependence. Mutant channels were also slower to inactivate, recovered from inactivation more readily and demonstrated a significantly accelerated deactivation rate compared with the slow deactivation of wild-type channels. The intermediate nature of the biophysical perturbation is consistent with the degree of severity in the clinical phenotype. The findings of this study demonstrate a previously unknown role of the proximal N-terminus in deactivation and support the hypothesis that the proximal N-terminal domain is essential in maintaining slow hERG deactivation.
SUBMITTER: Osterbur ML
PROVIDER: S-EPMC4667707 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA