Unknown

Dataset Information

0

Super-resolution imaging of nuclear import of adeno-associated virus in live cells.


ABSTRACT: Adeno-associated virus (AAV) has been developed as a promising human gene therapy vector. Particularly, recombinant AAV vector (rAAV) achieves its transduction of host cells by crossing at least three physiological barriers including plasma membrane, endosomal membrane, and nuclear envelope (NE). So far, the AAV transduction mechanism has not been explored thoroughly at the single viral particle level. In this study, we employed high-speed super-resolution single-point edge-excitation sub-diffraction (SPEED) microscopy to map the events of single rAAV2 particles infecting live human cells with an unprecedented spatiotemporal resolution of 9-12?nm and 2-20?ms. Data reveal that rAAV2 particles are imported through nuclear pore complexes (NPCs) rather than nuclear membrane budding into the nucleus. Moreover, approximately 17% of the rAAV2 molecules starting from the cytoplasm successfully transverse the NPCs to reach the nucleoplasm, revealing that the NPCs act as a strict selective step for AAV delivery. This study lastly suggests a new pathway to improve AAV vectors for human gene therapy.

SUBMITTER: Kelich JM 

PROVIDER: S-EPMC4667716 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Super-resolution imaging of nuclear import of adeno-associated virus in live cells.

Kelich Joseph M JM   Ma Jiong J   Dong Biao B   Wang Qizhao Q   Chin Mario M   Magura Connor M CM   Xiao Weidong W   Yang Weidong W  

Molecular therapy. Methods & clinical development 20151202


Adeno-associated virus (AAV) has been developed as a promising human gene therapy vector. Particularly, recombinant AAV vector (rAAV) achieves its transduction of host cells by crossing at least three physiological barriers including plasma membrane, endosomal membrane, and nuclear envelope (NE). So far, the AAV transduction mechanism has not been explored thoroughly at the single viral particle level. In this study, we employed high-speed super-resolution single-point edge-excitation sub-diffra  ...[more]

Similar Datasets

| S-EPMC3137767 | biostudies-literature
| S-EPMC10999750 | biostudies-literature
| S-EPMC2655310 | biostudies-literature
| S-EPMC5369336 | biostudies-literature
| S-EPMC6935894 | biostudies-literature
| S-EPMC3898876 | biostudies-literature
| S-EPMC3435176 | biostudies-literature
| S-EPMC3737505 | biostudies-literature
| S-EPMC4996739 | biostudies-literature
| S-EPMC4593319 | biostudies-literature