Unknown

Dataset Information

0

Local and macroscopic electrostatic interactions in single ?-helices.


ABSTRACT: The noncovalent forces that stabilize protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and ?-helices in peptides. Electrostatic forces-which include interactions between side chains, the backbone and side chains, and side chains and the helix macrodipole-are believed to contribute to these equilibria. Here we probe these interactions experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (which include both local effects between proximal charges and interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, the understanding of protein folding and the refinement of force fields for biomolecular modeling and simulations. In addition, this study sheds light on the stability of rod-like structures formed by single ?-helices, which are common in natural proteins such as non-muscle myosins.

SUBMITTER: Baker EG 

PROVIDER: S-EPMC4668598 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Local and macroscopic electrostatic interactions in single α-helices.

Baker Emily G EG   Bartlett Gail J GJ   Crump Matthew P MP   Sessions Richard B RB   Linden Noah N   Faul Charl F J CF   Woolfson Derek N DN  

Nature chemical biology 20150209 3


The noncovalent forces that stabilize protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. Electrostatic forces-which include interactions between side chains, the backbone and side chains, and side chains and the helix macrodipole-are believed to contribute to these equilibria. Here we probe these interactions experimentally using designed peptides. We find that both terminal backbone-side chain and certai  ...[more]

Similar Datasets

| S-EPMC2633579 | biostudies-literature
| S-EPMC2143171 | biostudies-other
| S-EPMC6398138 | biostudies-literature
| S-EPMC4183817 | biostudies-literature
| S-EPMC3175075 | biostudies-literature
| S-EPMC4109691 | biostudies-literature
| S-EPMC5378345 | biostudies-literature
| S-EPMC3104237 | biostudies-literature
| S-EPMC8396666 | biostudies-literature
| S-EPMC4083606 | biostudies-literature