Unknown

Dataset Information

0

Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering.


ABSTRACT: Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. (14)C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA-adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA-adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.

SUBMITTER: Cheng TL 

PROVIDER: S-EPMC4669987 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4043220 | biostudies-literature
| S-EPMC4380102 | biostudies-other
| S-EPMC4890291 | biostudies-literature
| S-EPMC4754149 | biostudies-literature
| S-EPMC3938937 | biostudies-literature
| S-EPMC6263540 | biostudies-literature
| S-EPMC6219106 | biostudies-literature
| S-EPMC6749304 | biostudies-literature
| S-EPMC7885732 | biostudies-literature
| S-EPMC3755884 | biostudies-literature