Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma.
Ontology highlight
ABSTRACT: Biological robustness is exposed to stochastic perturbations, which should be controlled by intrinsic mechanisms; the promiscuous signaling network without appropriate alleviation is the true nature of cancer cells. B cell receptor (BCR) signaling is a major source of gene expression signature important for B cell. It is still unclear the mechanism by which the expression of functionally important genes is continuously deregulated in malignant lymphomas. Using RISC-capture assay, we reveal that multiple BCR signaling factors are persistently regulated by microRNA (miRNA) in human B cells. Clinical samples from patients with diffuse large B-cell lymphoma (DLBCL, n = 83) show loss of an essential miRNA set (miR-200c, miR-203, miR-31). Conventional screening and RISC profiling identify multiple targets (CD79B, SYK, PKCβII, PLCγ1, IKKβ, NIK, MYD88, PI3K class I (α/β/δ/γ), RasGRP3); signaling network habitually faces interference composed by miRNA group in normal B cells. We demonstrate that simultaneous depletion of the key miRNAs enhances translation of the multiple targets and causes chronic activation of NF-κB, PI3K-Akt, and Ras-Erk cascades, leading to B cell transformation. This study suggests that compensatory actions by multiple miRNAs rather than by a single miRNA ensure robustness of biological processes.
SUBMITTER: Yamagishi M
PROVIDER: S-EPMC4671098 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA