Project description:Since late 2013, several outbreaks of porcine epidemic diarrhea virus (PEDV) infection have emerged in Taiwan. Suckling piglets under 2 weeks of age showed severe vomiting and watery yellowish diarrhea with morbidity and mortality ranging from 80 to 100% and 90 to 100%, respectively. A total of 68 samples from 25 pig farms were confirmed as positive for PEDV and negative for rotavirus and transmissible gastroenteritis virus by reverse transcription PCR, and the partial S gene of PEDV was analyzed. Phylogenetic analysis places all 18 Taiwanese PEDV isolates collected during this outbreak in the same clade as the US strains of PEDV. This novel PEDV is prevailing and currently causing severe outbreaks in Taiwan.
Project description:Since late 2013, outbreaks of porcine epidemic diarrhea virus (PEDV) have reemerged in Japan. In the present study, we observed a high detection rate of PEDV, with 72.5 % (148/204) of diarrhea samples (suckling, weaned, and sows) and 88.5 % (77/87) of farms experiencing acute diarrhea found to be positive for PEDV by reverse transcription PCR. Sequencing and phylogenic analyses of the partial spike gene and ORF3 of PEDV demonstrated that all prevailing Japanese PEDV isolates belonged to novel genotypes that differed from previously reported strains and the two PEDV vaccine strains currently being used in Japan. Sequence and phylogenetic analysis revealed prevailing PEDV isolates in Japan had the greatest genetic similarity to US isolates and were not vaccine-related. Unlike vaccine strains, all prevailing field PEDV isolates in Japan were found to have a number of amino acid differences in the neutralizing epitope domain, COE, which may affect antigenicity and vaccine efficacy. The present study indicates recent PEDV isolates may have been introduced into Japan from overseas and highlights the urgent requirement of novel vaccines for controlling PEDV outbreaks in Japan.
Project description:In late 2013, outbreaks of porcine epidemic diarrhea virus (PEDV) infection recurred in South Korea. Genetic and phylogenetic analyses showed that isolates from the outbreaks were most closely related to emergent US strains of PEDV. These US strain-like PEDV variants are prevalent in South Korea and responsible for recent outbreaks in the country.
Project description:Outbreaks of porcine epidemic diarrhea (PED) have resulted in significant economic losses in the swine industry, and another PED outbreak occurred in 2014 in Korea. Isolating and culturing PED virus (PEDV) allow investigations into its pathogenesis and the development of vaccines and diagnostic assays. In this study, we successfully isolated two PEDV isolates (QIAP1401 and QIAP1402) from naturally infected piglets at Jeju-do, Korea. Viral propagation was confirmed in Vero cells based on cytopathic effect, immunofluorescence assay, reverse transcription-polymerase chain reaction, and electron microscopic analyses. The QIAP401 isolate propagated well in Vero cells for 70 passages, with titers of 106.5 to 107.0 50% tissue culture infectious dose/mL, which increased gradually with passaging. The nucleotide and amino acid sequences of the QIAP1401 isolate were determined and compared with those of other PEDV isolates. The QIAP1401 isolate was determined to be closely related to the USA/Minnesota271/2014 strain (> 99.9% nucleotide similarity) that was isolated in the USA in 2014. Phylogenetic analysis based on several PEDV genes suggested that a new PEDV variant is circulating in the Korean swine industry, with 93.08% similarity to the SM98 strain isolated in 1998. In addition, the QIAP1401 strain showed strong virulence in 3-day-old piglets and 11-week-old growing pigs.
Project description:The number of porcine epidemic diarrhea (PED) cases has increased over the past 20 years in Korea, with a major outbreak in 2013. A total of 27 Korean strains from 1998 to 2013 were analyzed (excluding the noncoding regions) and divided into two groups for comparison of the spike (S), ORF3, envelope (E), membrane (M), and nucleocapsid (N) genes with those of reference strains, vaccine strains, and previously identified strains based on phylogenetic analysis. Analysis of the selection patterns of PEDV isolated in Korea indicated positive selection of nine nonsynonymous sites in the S and N proteins and negative selection at 97 sites for all of the proteins. Interestingly, eight nonsynonymous mutations in S showed no significant pattern change over the 15-year period, and one of eight mutation sites was found only in IC05TK, GN05DJ, and KNU0802 in the epidemic years 2005 and 2008. These eight mutations were also present during the epidemic years in China. Furthermore, of the signs of positive selection in the S protein, the conservative substitutions were more frequent than radical substitutions in PEDVs, suggesting that the evolution of Korean strains has been slow. Serological cross-reactivity was detected between three field PEDVs and two vaccine strains, with different serum neutralization titers. In conclusion, although Korean PEDVs have been evolving slowly, their diverse antigenicity and genetics imply that multilateral efforts to prevent future PED outbreaks are required.
Project description:Since 1992, porcine epidemic diarrhea virus (PEDV) has been one of the most common porcine diarrhea-associated viruses in South Korea. We conducted a large-scale investigation of the incidence of PEDV in pigs with diarrhea in South Korea and consequently identified and characterized a novel PEDV variant with a large genomic deletion.
Project description:Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. PEDV has been a major problem in the pig industry since its first identification in 1992. The aim of this study was to investigate the diversity, molecular characteristics, and phylogenetic relationships of PEDVs in field samples from Korea. Six PEDVs were identified from the field samples, and the full spike (S) glycoprotein gene sequences were analyzed. A phylogenetic analysis of the S gene sequences from the six isolates revealed that they were clustered into the G2b subgroup with genetic distance. The genetic identity of the nucleotide sequences and deduced amino acid sequences of the S genes of those isolates was 97.9-100% and 97.4-100%, respectively. A BLAST search for new PEDVs revealed an identity greater than 99.5% compared to the highest similarity of two different Korean strains. The CO-26K equivalent (COE) epitope had a 521H→Y/Q amino acid substitution compared to the subgroup G2b reference strain (KNU-1305). The CNU-22S11 had 28 amino acid substitutions compared to the KNU-1305 strain, which included two newly identified amino acid substitutions: 562S→F and 763P→L in the COE and SS6 epitopes, respectively. Furthermore, the addition and loss of N-linked glycosylation were observed in the CNU-22S11. The results suggest that various strains of PEDV are prevalent and undergoing evolution at swine farms in South Korea and can affect receptor specificity, virus pathogenicity, and host immune system evasion. Overall, this study provides an increased understanding of the prevalence and control of PEDV in South Korea.