Matrix-M™ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine.
Ontology highlight
ABSTRACT: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal.To assess the immune potentiating properties of Matrix-M™, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M™. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M™ broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses.Matrix-M™ adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M™ adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained.The results of this study emphasize the promising potential of a Matrix-M™-adjuvated seasonal trivalent virosomal influenza vaccine. Adjuvation of trivalent virosomal vaccine does not only enhance homologous protection, but in addition induces protection against heterologous strains and thus provides overall more potent and broad protective immunity.
SUBMITTER: Cox F
PROVIDER: S-EPMC4672496 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA