Unknown

Dataset Information

0

Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease.


ABSTRACT: Midbrain dopamine (DA) modulates the activity of basal ganglia circuitry important for motor control in a variety of species. In songbirds, DA underlies motivational behavior including reproductive drive and is implicated as a gatekeeper for neural activity governing vocal variability. In the zebra finch, Taeniopygia guttata, DA levels increase in Area X, a song-dedicated subregion of the basal ganglia, when a male bird sings his courtship song to a female (female-directed; FD). Levels remain stable when he sings a less stereotyped version that is not directed toward a conspecific (undirected; UD). Here, we used a mild dose of the neurotoxin 6-hydroxydopamine (6-OHDA) to reduce presynaptic DA input to Area X and characterized the effects on FD and UD behaviors. Immunoblots were used to quantify levels of tyrosine hydroxylase (TH) as a biomarker for DA afferent loss in vehicle- and 6-OHDA-injected birds. Following 6-OHDA administration, TH signals were lower in Area X but not in an adjacent subregion, ventral striatal-pallidum (VSP). A postsynaptic marker of DA signaling was unchanged in both regions. These observations suggest that effects were specific to presynaptic afferents of vocal basal ganglia. Concurrently, vocal variability was reduced during UD but not FD song. Similar decreases in vocal variability are observed in patients with Parkinson disease (PD), but the link to DA loss is not well-understood. The 6-OHDA songbird model offers a unique opportunity to further examine how DA loss in cortico-basal ganglia pathways affects vocal control.

SUBMITTER: Miller JE 

PROVIDER: S-EPMC4673629 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease.

Miller Julie E JE   Hafzalla George W GW   Burkett Zachary D ZD   Fox Cynthia M CM   White Stephanie A SA  

Physiological reports 20151101 11


Midbrain dopamine (DA) modulates the activity of basal ganglia circuitry important for motor control in a variety of species. In songbirds, DA underlies motivational behavior including reproductive drive and is implicated as a gatekeeper for neural activity governing vocal variability. In the zebra finch, Taeniopygia guttata, DA levels increase in Area X, a song-dedicated subregion of the basal ganglia, when a male bird sings his courtship song to a female (female-directed; FD). Levels remain st  ...[more]

Similar Datasets

| S-EPMC4249626 | biostudies-literature
| S-EPMC8795483 | biostudies-literature
| S-EPMC7031510 | biostudies-literature
| S-EPMC5826274 | biostudies-literature
| S-EPMC6549970 | biostudies-literature
| S-EPMC9067653 | biostudies-literature
| S-EPMC2877555 | biostudies-literature
| S-EPMC3539882 | biostudies-literature
2014-03-21 | GSE56075 | GEO
| S-EPMC6879308 | biostudies-literature