Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments.
Ontology highlight
ABSTRACT: Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity.
SUBMITTER: Batterman S
PROVIDER: S-EPMC4682201 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA