Unknown

Dataset Information

0

High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.


ABSTRACT: In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

SUBMITTER: Charnukha A 

PROVIDER: S-EPMC4683369 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

Charnukha A A   Evtushinsky D V DV   Matt C E CE   Xu N N   Shi M M   Büchner B B   Zhigadlo N D ND   Batlogg B B   Borisenko S V SV  

Scientific reports 20151218


In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether  ...[more]

Similar Datasets

| S-EPMC4441009 | biostudies-literature
| S-EPMC3953724 | biostudies-literature
| S-EPMC1635077 | biostudies-literature
| S-EPMC3336180 | biostudies-literature
| S-EPMC3863972 | biostudies-literature
| S-EPMC4352889 | biostudies-literature
| S-EPMC6495754 | biostudies-literature
| S-EPMC3741623 | biostudies-literature
| S-EPMC11464766 | biostudies-literature
| S-EPMC4776102 | biostudies-other