Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation.
Ontology highlight
ABSTRACT: Metazoan sibling cells often diverge in activity and identity, suggesting links between growth signals and cell fate. We show that unequal transduction of nutrient-sensitive PI3K/AKT/mTOR signaling during cell division bifurcates transcriptional networks and fates of kindred cells. A sibling B lymphocyte with stronger signaling, indexed by FoxO1 inactivation and IRF4 induction, undergoes PI3K-driven Pax5 repression and plasma cell determination, while its sibling with weaker PI3K activity renews a memory or germinal center B cell fate. PI3K-driven effector T cell determination silences TCF1 in one sibling cell, while its PI3K-attenuated sibling self-renews in tandem. Prior to bifurcations achieving irreversible plasma or effector cell fate determination, asymmetric signaling during initial divisions specifies a more proliferative, differentiation-prone lymphocyte in tandem with a more quiescent memory cell sibling. By triggering cell division but transmitting unequal intensity between sibling cells, nutrient-sensitive signaling may be a frequent arbiter of cell fate bifurcations during development and repair.
SUBMITTER: Lin WH
PROVIDER: S-EPMC4685001 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA