Unknown

Dataset Information

0

Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task.


ABSTRACT: The recently developed 'two-step' behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects' investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues.

SUBMITTER: Akam T 

PROVIDER: S-EPMC4686094 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5008760 | biostudies-literature
| S-EPMC441615 | biostudies-literature
2022-04-28 | GSE201766 | GEO
| S-EPMC5297924 | biostudies-literature
| S-EPMC33953 | biostudies-literature
| S-EPMC3101226 | biostudies-literature
| S-EPMC9237199 | biostudies-literature
| S-EPMC4906413 | biostudies-other
| S-EPMC4167035 | biostudies-literature
| S-EPMC6611652 | biostudies-literature