A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7.
Ontology highlight
ABSTRACT: Escherichia coli O157:H7 is one of the leading bacterial pathogens causing foodborne illness. In this study, an impedance immunosensor based on the use of magnetic nanobeads and screen-printed interdigitated electrodes was developed for the rapid detection of E. coli O157:H7. Magnetic nanobeads coated with anti-E. coli antibody were mixed with an E. coli sample and used to isolate and concentrate the bacterial cells. The sample was suspended in redox probe solution and placed onto a screen-printed interdigitated electrode. A magnetic field was applied to concentrate the cells on the surface of the electrode and the impedance was measured. The impedance immunosensor could detect E. coli O157:H7 at a concentration of 10(4.45) cfu·mL(-1) (~1400 bacterial cells in the applied volume of 25 ?L) in less than 1 h without pre-enrichment. A linear relationship between bacteria concentration and impedance value was obtained between 10(4.45) cfu·mL(-1) and 10(7) cfu·mL(-1). Though impedance measurement was carried out in the presence of a redox probe, analysis of the equivalent circuit model showed that the impedance change was primarily due to two elements: Double layer capacitance and resistance due to electrode surface roughness. The magnetic field and impedance were simulated using COMSOL Multiphysics software.
SUBMITTER: Wang R
PROVIDER: S-EPMC4697145 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA