Unknown

Dataset Information

0

Disturbance and density-dependent processes (competition and facilitation) influence the fine-scale genetic structure of a tree species' population.


ABSTRACT:

Background and aims

Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters).

Methods

The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions.

Key results

All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10?m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation.

Conclusions

Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests.

SUBMITTER: Fajardo A 

PROVIDER: S-EPMC4701149 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disturbance and density-dependent processes (competition and facilitation) influence the fine-scale genetic structure of a tree species' population.

Fajardo Alex A   Torres-Díaz Cristian C   Till-Bottraud Irène I  

Annals of botany 20150929 1


<h4>Background and aims</h4>Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to hi  ...[more]

Similar Datasets

| S-EPMC6076282 | biostudies-literature
| S-EPMC5856272 | biostudies-other
| S-EPMC5777495 | biostudies-literature
| S-EPMC3150396 | biostudies-literature
| S-EPMC3380906 | biostudies-literature
| S-EPMC5869361 | biostudies-literature
| S-EPMC5589249 | biostudies-literature
| S-EPMC4672697 | biostudies-literature
| S-EPMC4552639 | biostudies-literature
| S-EPMC5749864 | biostudies-literature