Unknown

Dataset Information

0

Next-Generation mRNA Sequencing Reveals Pyroptosis-Induced CD4+ T Cell Death in Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues.


ABSTRACT: Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4(+) T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes (dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodeficiency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation mRNA sequencing (RNA-seq). At 6 and 10 dpi, concomitant with increased SIV replication, 366 and 1,350 DEGs were detected, respectively, including upregulation of genes encoding proteins that play a role in innate antiviral immune responses, inflammation, and immune activation. Notably, genes (IFI16, caspase-1, and interleukin 1? [IL-1?]) in the canonical pyroptosis pathway were significantly upregulated in expression. We further validated increased pyroptosis using flow cytometry and found that the number of CD4(+) T cells expressing activated caspase-1 protein, the hallmark of ongoing pyroptosis, were significantly increased, which is correlated with decreased CD4(+) T cells in dLNs. Our results demonstrated that pyroptosis contributes to the CD4(+) T cell death in vivo in early SIV infection, which suggests that pyroptosis may play a pivotal role in the pathogenesis of SIV, and by extension, that of HIV-1, since pyroptosis not only induces CD4(+) T cell death but also amplifies inflammation and immune activation. Thus, blocking CD4(+) T cell pyroptosis could be a complementary treatment to antiretroviral therapy.Although secondary lymphoid tissues (LTs) are principal sites of human immunodeficiency virus type 1 (HIV-1) replication, inflammation, immune activation, and CD4(+) T cell death, immunopathogenesis in LTs during early infection remains largely unknown. Using the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV rectal infection, we investigated early virus-host interactions. Our results revealed elevated potent host responses in early infection in LTs, including upregulation of genes involved in antiviral immune response, inflammation, and immune activation. Importantly, genes involved in the canonical pyroptosis pathway were significantly upregulated, and there was a strong correlation between CD4(+) T cell decrease and increased number of CD4(+) T cells expressing activated caspase-1 protein, demonstrating that pyroptosis contributes to CD4(+) T cell death in vivo in very early SIV infection. Our finding suggests that blocking pyroptosis may be able to decrease CD4(+) T cell loss during early SIV infection.

SUBMITTER: Lu W 

PROVIDER: S-EPMC4702687 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Next-Generation mRNA Sequencing Reveals Pyroptosis-Induced CD4+ T Cell Death in Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues.

Lu Wuxun W   Demers Andrew J AJ   Ma Fangrui F   Kang Guobin G   Yuan Zhe Z   Wan Yanmin Y   Li Yue Y   Xu Jianqing J   Lewis Mark M   Li Qingsheng Q  

Journal of virology 20151111 2


<h4>Unlabelled</h4>Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4(+) T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal d  ...[more]

Similar Datasets

| S-EPMC7337596 | biostudies-literature
| S-EPMC3624224 | biostudies-literature
| S-EPMC8242952 | biostudies-literature
2021-04-16 | GSE169736 | GEO
| S-EPMC7022363 | biostudies-literature
| S-EPMC6933296 | biostudies-literature
| S-EPMC236803 | biostudies-other
| S-EPMC5571247 | biostudies-literature
| S-EPMC4442434 | biostudies-literature
| S-EPMC5165277 | biostudies-literature