Project description:It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term "lag threads," are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals.
Project description:Attention-deficit/hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood, and there is great interest in understanding its neurobiological basis. A prominent neurodevelopmental hypothesis proposes that ADHD involves a lag in brain maturation. Previous work has found support for this hypothesis, but examinations have been limited to structural features of the brain (e.g., gray matter volume or cortical thickness). More recently, a growing body of work demonstrates that the brain is functionally organized into a number of large-scale networks, and the connections within and between these networks exhibit characteristic patterns of maturation. In this study, we investigated whether individuals with ADHD (age 7.2-21.8 y) exhibit a lag in maturation of the brain's developing functional architecture. Using connectomic methods applied to a large, multisite dataset of resting state scans, we quantified the effect of maturation and the effect of ADHD at more than 400,000 connections throughout the cortex. We found significant and specific maturational lag in connections within default mode network (DMN) and in DMN interconnections with two task positive networks (TPNs): frontoparietal network and ventral attention network. In particular, lag was observed within the midline core of the DMN, as well as in DMN connections with right lateralized prefrontal regions (in frontoparietal network) and anterior insula (in ventral attention network). Current models of the pathophysiology of attention dysfunction in ADHD emphasize altered DMN-TPN interactions. Our finding of maturational lag specifically in connections within and between these networks suggests a developmental etiology for the deficits proposed in these models.