Unknown

Dataset Information

0

MicroRNAs in Honey Bee Caste Determination.


ABSTRACT: The cellular mechanisms employed by some organisms to produce contrasting morphological and reproductive phenotypes from the same genome remains one of the key unresolved issues in biology. Honeybees (Apis mellifera) use differential feeding and a haplodiploid sex determination system to generate three distinct organismal outcomes from the same genome. Here we investigate the honeybee female and male caste-specific microRNA and transcriptomic molecular signatures during a critical time of larval development. Both previously undetected and novel miRNAs have been discovered, expanding the inventory of these genomic regulators in invertebrates. We show significant differences in the microRNA and transcriptional profiles of diploid females relative to haploid drone males as well as between reproductively distinct females (queens and workers). Queens and drones show gene enrichment in physio-metabolic pathways, whereas workers show enrichment in processes associated with neuronal development, cell signalling and caste biased structural differences. Interestingly, predicted miRNA targets are primarily associated with non-physio-metabolic genes, especially neuronal targets, suggesting a mechanistic disjunction from DNA methylation that regulates physio-metabolic processes. Accordingly, miRNA targets are under-represented in methylated genes. Our data show how a common set of genetic elements are differentially harnessed by an organism, which may provide the remarkable level of developmental flexibility required.

SUBMITTER: Ashby R 

PROVIDER: S-EPMC4704047 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

MicroRNAs in Honey Bee Caste Determination.

Ashby Regan R   Forêt Sylvain S   Searle Iain I   Maleszka Ryszard R  

Scientific reports 20160107


The cellular mechanisms employed by some organisms to produce contrasting morphological and reproductive phenotypes from the same genome remains one of the key unresolved issues in biology. Honeybees (Apis mellifera) use differential feeding and a haplodiploid sex determination system to generate three distinct organismal outcomes from the same genome. Here we investigate the honeybee female and male caste-specific microRNA and transcriptomic molecular signatures during a critical time of larval  ...[more]

Similar Datasets

| S-EPMC3862878 | biostudies-literature
2014-01-06 | GSE44853 | GEO
2013-12-31 | GSE50457 | GEO
2014-01-06 | E-GEOD-44853 | biostudies-arrayexpress
2013-12-31 | E-GEOD-50457 | biostudies-arrayexpress
2016-10-06 | GSE81118 | GEO
| S-EPMC4662310 | biostudies-literature
| S-EPMC7746283 | biostudies-literature
| S-EPMC3212421 | biostudies-literature
| S-EPMC5374498 | biostudies-literature