YAPI, a new Yersinia pseudotuberculosis pathogenicity island.
Ontology highlight
ABSTRACT: Pathogenicity islands (PAIs) are chromosomal clusters of pathogen-specific virulence genes often found at tRNA loci. In the Yersinia pseudotuberculosis 32777 chromosome, we characterized a 98-kb segment that has all of the characteristic features of a PAI, including insertion in a (phenylalanine) tRNA gene, the presence of a bacteriophage-like integrase-encoding gene, and direct repeats at the integration sites. The G+C content of the segment ranges from 31 to 60%, reflecting a genetic mosaic: this is consistent with the notion that the sequences were horizontally acquired. The PAI, termed YAPI (for Yersinia adhesion pathogenicity island), carries 95 open reading frames and includes (i) the previously described pil operon, encoding a type IV pilus that contributes to pathogenicity (F. Collyn et al., Infect. Immun. 70:6196-6205, 2002); (ii) a block of genes potentially involved in general metabolism; (iii) a gene cluster for a restriction-modification system; and (iv) a large number of mobile genetic elements. Furthermore, the PAI can excise itself from the chromosome at low frequency and in a precise manner, and deletion does not result in a significant decrease of bacterial virulence compared to inactivation of the fimbrial gene cluster alone. The prevalence and size of the PAI vary from one Y. pseudotuberculosis strain to another, and it can be found integrated into either of the two phe tRNA loci present on the species' chromosome. YAPI was not detected in the genome of the genetically closely related species Y. pestis, whereas a homologous PAI is harbored by the Y. enterocolitica chromosome.
SUBMITTER: Collyn F
PROVIDER: S-EPMC470613 | biostudies-literature | 2004 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA