1,25D3 prevents CD8(+)Tc2 skewing and asthma development through VDR binding changes to the Cyp11a1 promoter.
Ontology highlight
ABSTRACT: Effector CD8(+) T cells convert from IFN-γ(+) (Tc1) to IL-13(+) (Tc2) cells in the presence of IL-4. Underlying regulatory mechanisms are not fully defined. Here, we show that addition of 1,25D3, the active form of vitamin D3, during CD8(+) T-cell differentiation prevents IL-4-induced conversion to IL-13-producers. Transfer of 1,25D3-treated CD8(+) T cells into sensitized and challenged CD8(+)-deficient recipients fails to restore development of lung allergic responses. 1,25D3 alters vitamin D receptor (VDR) recruitment to the Cyp11a1 promoter in vitro and in vivo in the presence of IL-4. As a result, protein levels and enzymatic activity of CYP11A1, a steroidogenic enzyme regulating CD8(+) T-cell conversion, are decreased. An epistatic effect between CYP11A1 and VDR polymorphisms may contribute to the predisposition to childhood asthma. These data identify a role for 1,25D3 in the molecular programming of CD8(+) T-cell conversion to an IL-13-secreting phenotype through regulation of steroidogenesis, potentially governing asthma susceptibility.
Project description:Allergic asthma is a heterogeneous inflammatory disorder of the airways characterized by chronic airway inflammation and airway hyperresponsiveness. Numbers of CD8(+)IL-13(+) T cells are increased in asthmatics and during the development of experimental asthma in mice. In an atopic environment rich in IL-4, these CD8(+) T cells mediate asthmatic responses, but the mechanisms regulating the conversion of CD8(+) effector T cells from IFN-γ- to pathogenic IL-13-producing effector cells that contribute to an asthma phenotype have not been defined. Here, we show that cholesterol side-chain cleavage P450 enzyme, Cyp11a1, is a key regulator of CD8(+) T-cell conversion. Expression of the gene, protein, and enzymatic activity of Cyp11a1 were markedly increased in CD8(+) T cells differentiated in the presence of IL-2 plus IL-4 compared with cells differentiated in IL-2 alone. Inhibition of Cyp11a1 enzymatic activity with aminoglutethimide or reduction in the expression of Cyp11a1 using short hairpin RNA prevented the IL-4-induced conversion of IFN-γ- to IL-13-producing cells without affecting expression of the lineage-specific transcription factors T-box expressed in T cells (T-bet) or GATA binding protein 3 (GATA3). Adoptive transfer of aminoglutethimide-treated CD8(+) T cells into sensitized and challenged CD8-deficient recipients failed to restore airway hyperresponsiveness and inflammation. We demonstrate that Cyp11a1 controls the phenotypic conversion of CD8(+) T cells from IFN-γ to IL-13 production, linking steroidogenesis in CD8(+) T cells, a nonclassical steroidogenic tissue, to a proallergic differentiation pathway.
Project description:The mechanism(s) underlying endotoxin tolerance in asthma remain elusive. As the endotoxin lipopolysaccharide (LPS) affects the expression of the regulatory T-cell (Treg)-suppressive glucocorticoid-induced tumor necrosis factor receptor ligand (GITRL) on antigen-presenting dendritic cells (DCs), we hypothesized that LPS-induced changes in DC GITRL expression may impact Treg-mediated T-helper (Th) cell suppression and the induction of endotoxin tolerance. Here, we propose a novel mechanism by which low-dose LPS inhalation in neonatal mice induces endotoxin tolerance, thereby offering protection from later asthma development. Three-day old wild-type and Toll-like receptor 4 (TLR4)-deficient neonatal mice were exposed to low-dose LPS (1 μg) intranasally for 10 consecutive days prior to ovalbumin (OVA)-induced asthma to better understand the tolerogenic mechanism(s) of low-dose LPS pre-exposure. In vivo findings were validated using in vitro co-culturing studies of primary CD11c+ DCs and CD4+ T-cells with or without low-dose LPS pre-exposure before OVA stimulation. Low-dose LPS pre-exposure upregulated the Treg response and downregulated pathogenic Th2 and Th17 responses through promoting apoptosis of Th2 and Th17 cells. Low-dose LPS pre-exposure downregulated DC GITRL expression and T-cell GITR expression. Artificial DC GITRL expression abrogated the tolerogenic Treg-skewing effect of low-dose LPS pre-exposure. Low-dose LPS pre-exposure inhibited TRIF/IRF3/IFNβ signaling and upregulated expression of tolerogenic TRIF/IRF3/IFNβ negative regulators in a TLR4-dependent manner. This tolerogenic DC GITRL downregulation was attributable to TRIF/IRF3/IFNβ signaling inhibition. Low-dose LPS pre-exposure produces tolerogenic Treg skewing in neonatal asthmatic mice, a phenomenon attributable to TLR4-dependent TRIF/IRF3/IFNβ-mediated DC GITRL downregulation.
Project description:The CYP11A1 gene encodes the cholesterol side chain cleavage enzyme that catalyzes the initial and rate-limiting step of steroidogenesis. A large number of epidemiologic studies have implicated the duration and degree of endogenous estrogen exposure in the development of breast cancer in women. Here, we conduct a systematic investigation of the role of genetic variation of the CYP11A1 gene in breast cancer risk in a study of 1193 breast cancer cases and 1310 matched controls from the Shanghai Breast Cancer Study. We characterize the genetic architecture of the CYP11A1 gene in a Chinese study population. We then genotype tagging polymorphisms to capture common variation at the locus for tests of association. Variants designating a haplotype encompassing the gene promoter are significantly associated with both increased expression (P = 1.6e-6) and increased breast cancer risk: heterozygote age-adjusted odds ratio (OR), 1.51 [95% confidence interval (95% CI), 1.19-1.91]; homozygote age-adjusted OR, 2.94 (95% CI, 1.22-7.12), test for trend, P = 5.0e-5. Among genes controlling endogenous estrogen metabolism, CYP11A1 harbors common variants that may influence expression to significantly modify risk of breast cancer.
Project description:Background and aim:Upregulation of prolyl isomerase-1 (Pin1) protein expression and activity was associated with the pathogenesis of diabetic vasculopathy through induction of endothelial oxidative stress and inflammation. Moreover, VDR agonist protects against high glucose-induced endothelial apoptosis through the inhibition of oxidative stress. We aimed to explore the effects of the VDR agonist on diabetes-associated endothelial dysfunction and the role of Pin1 in this process. Methods:Streptozocin-induced diabetic mice were randomly treated with vehicle, VDR agonist (10??g/kg/d, i.g., twice a week), or Pin1 inhibitor, Juglone (1?mg/kg/d, i.p., every other day), for eight weeks. In parallel, human umbilical vein endothelial cells (HUVECs) exposed to high-glucose condition were treated with 1,25-dihydroxyvitamin D3 and Juglone or vehicle for 72?hours. Organ chamber experiments were performed to assess endothelium-dependent relaxation to acetylcholine. Circulatory levels of Pin1, SOD, MDA, IL-1?, IL-6, and NO in diabetic mice, Pin1 protein expression and activity, subcellular distribution of p66Shc, and NF-?B p65 in high glucose-cultured HUVECs were determined. Results:Both VDR agonist and Juglone significantly improved diabetes-associated endothelial dysfunction and reduced high glucose-induced endothelial apoptosis. Mechanistically, the circulatory levels of SOD and NO were increased compared with those of vehicle-treated diabetic mice. Additionally, Pin1 protein expression and activity, p66Shc mitochondrial translocation, and NF-?B p65 in high glucose-cultured HUVECs were also inhibited by VDR agonist and Juglone. Knockdown of VDR abolished the inhibitory effects of VDR agonist on high glucose-induced upregulation of Pin1 protein expression and activity. Conclusions:VDR agonist prevents diabetic endothelial dysfunction through inhibition of Pin1-mediated mitochondrial oxidative stress and inflammation.
Project description:IntroductionVitamin D (VD) levels were correlated with different health conditions, including reproductive disorders in males. Vitamin D action is mediated through vitamin D receptor (VDR), which acts as a transcription factor. VDR gene promoter is embedded in a GC-rich island. The VDR gene has been shown to have several polymorphisms that affect the receptor function.AimTo examine the relationship between Cdx-2 polymorphism (rs17883968), the methylation status of VDR's promoter and serum levels of 25-hydroxyvitamin D in male infertility.Patients and methodsA total of 69 infertile men and 37 age-matched controls were enrolled in this study. Vitamin D level assessments were detected using the electrochemiluminescent method. Cdx-2 VDR polymorphism identification was performed by PCR on DNA samples from blood, followed by restriction. Methylation of VDR gene promoter was assessed by qMS-PCR using bisulfite-treated DNA from fresh sperm.ResultsVitamin D levels was found to be significantly decreased in infertile groups compared the controls (p=0.0279). The GG genotype was found in a higher percentage in controls and the AA genotype was higher in infertile group (p=0.0056). Infertile homozygote (GG) and heterozygote (GA) individuals had significantly higher vitamin D levels than AA homozygote. Methylation is higher in individuals with lower vitamin D levels and AA genotype is characterized by higher methylation values.ConclusionThe results provide new insights of Cdx-2 polymorphism is involved in vitamin D deficiency, highlighting the important role of epigenetic modification of vitamin D receptor and male infertility along with the genetic context.
Project description:Asthma is the most prevalent chronic respiratory disease worldwide. There is currently no cure, and it remains an important cause of morbidity and mortality. Here we report that lung-specific loss of function of the transcription factor Miz1 (c-Myc-interacting zinc finger protein-1) upregulates the pro-T-helper cell type 1 cytokine IL-12. Upregulation of IL-12 in turn stimulates a Th1 response, thereby counteracting T-helper cell type 2 response and preventing the allergic response in mouse models of house dust mite- and OVA (ovalbumin)-induced asthma. Using transgenic mice expressing Cre under a cell-specific promoter, we demonstrate that Miz1 acts in lung epithelial cells and dendritic cells in asthma. Chromatin immunoprecipitation coupled with high-throughput DNA sequencing or quantitative PCR reveals the binding of Miz1 on the Il12 promoter indicating direct repression of IL-12 by Miz1. In addition, HDAC1 (histone deacetylase 1) is recruited to the Il12 promoter in a Miz1-depdenent manner, suggesting epigenetic repression of Il12 by Miz1. Furthermore, Miz1 is upregulated in the lungs of asthmatic mice. Our data together suggest that Miz1 is upregulated during asthma, which in turn promotes asthma pathogenesis by preventing Th1 skewing through the transcriptional repression of IL-12.
Project description:All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.
Project description:Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Project description:Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma.
Project description:The Hedgehog (Hh) signalling pathway plays a critical role in regulating liver lipid metabolism and related diseases. However, the underlying mechanisms are poorly understood. Here, we show that the Hh signalling pathway induces a previously undefined long non-coding RNA (Hilnc, Hedgehog signalling-induced long non-coding RNA), which controls hepatic lipid metabolism. Mutation of the Gli-binding sites in the Hilnc promoter region (HilncBM/BM) decreases the expression of Hilnc in vitro and in vivo. HilncBM/BM and Hilnc-knockout mice are resistant to diet-induced obesity and hepatic steatosis through attenuation of the peroxisome proliferator-activated receptor signalling pathway, as Hilnc directly interacts with IGF2BP2 to enhance Pparγ mRNA stability. Furthermore, we identify a potential functional human homologue of Hilnc, h-Hilnc, which has a similar function in regulating cellular lipid metabolism. These findings uncover a critical role of the Hh-Hilnc-IGF2BP2 signalling axis in lipid metabolism and suggest a potential therapeutic target for the treatment of diet-induced hepatic steatosis.