Project description:BackgroundThe etiology of conduction disturbances necessitating permanent pacemaker (PPM) implantation is often unknown, although familial aggregation of PPM (faPPM) suggests a possible genetic basis. We developed a pan-cardiovascular next generation sequencing (NGS) panel to genetically characterize a selected cohort of faPPM.Materials and methodsWe designed and validated a custom NGS panel targeting the coding and splicing regions of 246 genes with involvement in cardiac pathogenicity. We enrolled 112 PPM patients and selected nine (8%) with faPPM to be analyzed by NGS.ResultsOur NGS panel covers 95% of the intended target with an average of 229x read depth at a minimum of 15-fold depth, reaching a SNP true positive rate of 98%. The faPPM patients presented with isolated cardiac conduction disease (ICCD) or sick sinus syndrome (SSS) without overt structural heart disease or identifiable secondary etiology. Three patients (33.3%) had heterozygous deleterious variants previously reported in autosomal dominant cardiac diseases including CCD: LDB3 (p.D117N) and TRPM4 (p.G844D) variants in patient 4; TRPM4 (p.G844D) and ABCC9 (p.V734I) variants in patient 6; and SCN5A (p.T220I) and APOB (p.R3527Q) variants in patient 7.ConclusionFaPPM occurred in 8% of our PPM clinic population. The employment of massive parallel sequencing for a large selected panel of cardiovascular genes identified a high percentage (33.3%) of the faPPM patients with deleterious variants previously reported in autosomal dominant cardiac diseases, suggesting that genetic variants may play a role in faPPM.
Project description:BackgroundGenomic profiling is increasingly incorporated into oncology research and the clinical care of cancer patients. We sought to determine physician perception and use of enterprise-scale clinical sequencing at our center, including whether testing changed management and the reasoning behind this decision-making.Patients and methodsAll physicians who consented patients to MSK-IMPACT, a next-generation hybridization capture assay, in tumor types where molecular profiling is not routinely performed were asked to complete a questionnaire for each patient. Physician determination of genomic 'actionability' was compared to an expertly curated knowledgebase of somatic variants. Reported management decisions were compared to chart review.ResultsResponses were received from 146 physicians pertaining to 1932 patients diagnosed with 1 of 49 cancer types. Physicians indicated that sequencing altered management in 21% (331/1593) of patients in need of a treatment change. Among those in whom treatment was not altered, physicians indicated the presence of an actionable alteration in 55% (805/1474), however, only 45% (362/805) of these cases had a genomic variant annotated as actionable by expert curators. Further evaluation of these patients revealed that 66% (291/443) had a variant in a gene associated with biologic but not clinical evidence of actionability or a variant of unknown significance in a gene with at least one known actionable alteration. Of the cases annotated as actionable by experts, physicians identified an actionable alteration in 81% (362/445). In total, 13% (245/1932) of patients were enrolled to a genomically matched trial.ConclusionAlthough physician and expert assessment differed, clinicians demonstrate substantial awareness of the genes associated with potential actionability and report using this knowledge to inform management in one in five patients.Clinical trial numberNCT01775072.
Project description:ObjectiveTranscatheter aortic valve implantation (TAVI) procedures are increasing rapidly, but the durability of tissue valve and periprocedural complications are not satisfactory. Immune reaction to the galactose-α-1,3 galactose β-1,4-N-acetylglucosamine (α-Gal) and conventional processing protocols of cardiac xenografts lead to calcification. Next-generation TAVI needs to be made with α-Gal-free xenografts by multiple anticalcification therapies to avoid immune rejection and enhance durability, and three-dimensional (3D) printing technology to improve the procedural safety.MethodsPorcine pericardia were decellularized and immunologically modified with α-galactosidase. The pericardia were treated by space filler, crosslinked with glutaraldehyde in organic solvent, and detoxified. The sheep-specific nitinol (nickel-titanium memory alloy) wire backbone was made from a 3D-printed model for ovine aortic root. After it passed the fitting test, we manufactured a self-expandable stented valve with the porcine pericardia mounted on the customized nitinol wire-based stent. After in vitro circulation using customized silicone aortic root, we performed TAVI in 9 sheep and obtained hemodynamic, radiological, immunohistopathological, and biochemical results.ResultsThe valve functioned well, with excellent stent fitting and good coronary flow under in vitro circulation. Sheep were sequentially scheduled to be humanely killed until 238 days after TAVI. Echocardiography and cardiac catheterization demonstrated good hemodynamic status and function of the aortic valve. The xenografts were well preserved without α-Gal immune reaction or calcification based on the immunological, radiographic, microscopic, and biochemical examinations.ConclusionsWe proved preclinical safety and efficacy for next-generation α-Gal-free TAVI with multiple anticalcification therapies and 3D-printing technology. A future clinical study is warranted based on these promising preclinical results.
Project description:ObjectivePermanent pacemaker implantation (PPMI) after transcatheter aortic valve implantation (TAVI) is the most common complication after the procedure. PPMI rates remain high with the new-generation TAVI devices despite improved outcomes concerning paravalvular aortic regurgitation and vascular access complications. However, the impact of PPMI on mortality and clinical outcome is still a matter of debate, and data with new-generation devices on this matter are scarce. Therefore, we sought to analyse the influence of PPMI in patients treated with the new-generation devices on one-year outcome.MethodsWe enrolled 612 consecutive patients without prior pacemaker undergoing transfemoral TAVI with the new-generation devices. Patients with or without PPMI were compared with respect to clinical outcome within one year.ResultsPPMI was performed in 168 patients (24.4% of the overall study population). There was no significant difference in one-year outcome concerning all-cause mortality (PPMI vs. no-PPMI: 12.2% vs. 12.5%, p = 0.94), rate of major adverse events including cardiac, cerebral or valve-related events and bleeding complications (22.1% vs. 24.5%, p = 0.55) or need for rehospitalisation due to cardiac symptoms (16.1% vs. 18.1%, p = 0.63). In patients with reduced ejection fraction (<45%) there was also no impact of PPMI on one-year mortality (14.3% vs. 15.7%, p = 0.86). Furthermore, multivariate analysis did not reveal PPMI to be independently associated with one-year mortality (odds ratio 0.94, 95% confidence interval 0.50-1.74, p = 0.83).ConclusionsIn this large all-comers TAVI population with new-generation devices the need for postprocedural PPMI did not show a statistical significant impact on survival or combined endpoint of major adverse events within one year.
Project description:Family history is an important factor in determining hereditary cancer risk for many cancer types. The emergence of next-generation sequencing (NGS) has expedited the discovery of many hereditary cancer susceptibility genes and the development of rapid, affordable testing kits. Here, a 30-gene targeted NGS panel for hereditary cancer risk assessment was tested and validated in a Saudi Arabian population. A total of 310 subjects were screened, including 57 non-cancer patients, 110 index patients with cancer and 143 of the cancer patients' family members, 16 of which also had cancer. Of the 310 subjects, 119 (38.4%) were carriers of pathogenic or likely pathogenic variants (PVs) affecting one or more of the following genes: TP53, ATM, CHEK2, CDH1, CDKN2A, BRCA1, BRCA2, PALB2, BRIP1, RAD51D, APC, MLH1, MSH2, MSH6, PMS2, PTEN, NBN/NBS1 and MUTYH. Among 126 patients and relatives with a history of cancer, 49 (38.9%) were carriers of PVs or likely PVs. Two variants in particular were significantly associated with the occurrence of a specific cancer in this population (APC c.3920T>A - colorectal cancer/Lynch syndrome (p = 0.026); TP53 c.868C>T; - multiple colon polyposis (p = 0.048)). Diverse variants in BRCA2, the majority of which have not previously been reported as pathogenic, were found at higher frequency in those with a history of cancer than in the general patient population. There was a higher background prevalence of genetic variants linked to familial cancers in this cohort than expected based on prevalence in other populations.
Project description:Gliomas account for the majority of primary brain tumors. Glioblastoma is the most common and malignant type. Based on their extreme molecular heterogeneity, molecular markers can be used to classify gliomas and stratify patients into diagnostic, prognostic, and therapeutic clusters. In this work, we developed and validated a targeted next-generation sequencing (NGS) approach to analyze variants or chromosomal aberrations correlated with tumorigenesis and response to treatment in gliomas. Our targeted NGS analysis covered 13 glioma-related genes (ACVR1, ATRX, BRAF, CDKN2A, EGFR, H3F3A, HIST1H3B, HIST1H3C, IDH1, IDH2, P53, PDGFRA, PTEN), a 125 bp region of the TERT promoter, and 54 single nucleotide polymorphisms (SNPs) along chromosomes 1 and 19 for reliable assessment of their copy number alterations (CNAs). Our targeted NGS approach provided a portrait of gliomas' molecular heterogeneity with high accuracy, specificity, and sensitivity in a single workflow, enabling the detection of variants associated with unfavorable outcomes, disease progression, and drug resistance. These preliminary results support its use in routine diagnostic neuropathology.
Project description:We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.
Project description:Next-generation genetic sequencing (NGS) technologies facilitate the screening of multiple genes linked to neurodegenerative dementia, but there are few reports about their use in clinical practice. Which patients would most profit from testing, and information on the likelihood of discovery of a causal variant in a clinical syndrome, are conspicuously absent from the literature, mostly for a lack of large-scale studies. We applied a validated NGS dementia panel to 3241 patients with dementia and healthy aged controls; 13,152 variants were classified by likelihood of pathogenicity. We identified 354 deleterious variants (DV, 12.6% of patients); 39 were novel DVs. Age at clinical onset, clinical syndrome and family history each strongly predict the likelihood of finding a DV, but healthcare setting and gender did not. DVs were frequently found in genes not usually associated with the clinical syndrome. Patients recruited from primary referral centres were compared with those seen at higher-level research centres and a national clinical neurogenetic laboratory; rates of discovery were comparable, making selection bias unlikely and the results generalisable to clinical practice. We estimated penetrance of DVs using large-scale online genomic population databases and found 71 with evidence of reduced penetrance. Two DVs in the same patient were found more frequently than expected. These data should provide a basis for more informed counselling and clinical decision making.
Project description:ObjectiveThe incidence of early stage multiple primary lung cancer (MPLC) has been increasing in recent years, while the ideal strategy for its diagnosis and treatment remains controversial. The present study conducted genomic analysis to identify a new molecular classification method for accurately predicting the diagnosis and therapy for patients with early stage MPLC.MethodsA total of 240 tissue samples from 203 patients with multiple-non-small-cell lung cancers (NSCLCs) (n = 30), early stage single-NSCLC (Group A, n = 94), and advanced-stage NSCLC (Group B, n = 79) were subjected to targeted multigene panel sequencing.ResultsThirty patients for whom next-generation sequencing was performed on >1 tumor were identified, yielding 45 tumor pairs. The frequencies of EGFR, TP53, RBM10, ERBB2, and CDKN2A mutations exhibited significant differences between early and advanced-stage NSCLCs. The prevalence of the EGFR L858R mutation in early stage NSCLC was remarkably higher than that in advanced-stage NSCLC (P = 0.047). The molecular method classified tumor pairs into 26 definite MPLC tumors and four intrapulmonary metastasis (IM) tumors. A high rate of discordance in driver genetic alterations was found in the different tumor lesions of MPLC patients. The prospective Martini histologic prediction of MPLC was discordant with the molecular method for three patients (16.7%), particularly in the prediction of IM (91.7% discordant).ConclusionsComprehensive molecular evaluation allows the unambiguous delineation of clonal relationships among tumors. In comparison, the Martini and Melamed criteria have notable limitations in the recognition of IM. Our results support the adoption of a large panel to supplement histology for strongly discriminating NSCLC clonal relationships in clinical practice.
Project description:The aim of this study was to combine clinical criteria and next-generation sequencing (pyrosequencing) to establish a diagnosis of familial hypercholesterolaemia (FH).A total of 77 subjects with a Dutch Lipid Clinic Network score of ? 3 (possible, probable or definite FH clinical diagnosis) were recruited from the Lipid Clinic at Sahlgrenska Hospital, Gothenburg, Sweden. Next-generation sequencing was performed in all subjects using SEQPRO LIPO RS, a kit that detects mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9) and LDLR adapter protein 1 (LDLRAP1) genes; copy-number variations in the LDLR gene were also examined.A total of 26 mutations were detected in 50 subjects (65% success rate). Amongst these, 23 mutations were in the LDLR gene, two in the APOB gene and one in the PCSK9 gene. Four mutations with unknown pathogenicity were detected in LDLR. Of these, three mutations (Gly505Asp, Ile585Thr and Gln660Arg) have been previously reported in subjects with FH, but their pathogenicity has not been proved. The fourth, a mutation in LDLR affecting a splicing site (exon 6-intron 6) has not previously been reported; it was found to segregate with high cholesterol levels in the family of the proband.Using a combination of clinical criteria and targeted next-generation sequencing, we have achieved FH diagnosis with a high success rate. Furthermore, we identified a new splicing-site mutation in the LDLR gene.