Unknown

Dataset Information

0

Dissecting Germ Cell Metabolism through Network Modeling.


ABSTRACT: Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

SUBMITTER: Whitmore LS 

PROVIDER: S-EPMC4721539 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dissecting Germ Cell Metabolism through Network Modeling.

Whitmore Leanne S LS   Ye Ping P  

PloS one 20150914 9


Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be ide  ...[more]

Similar Datasets

| S-EPMC3658275 | biostudies-literature
| S-EPMC6878787 | biostudies-literature
| S-EPMC5446999 | biostudies-literature
| S-EPMC5752146 | biostudies-literature
| S-EPMC6121015 | biostudies-other
2010-03-10 | GSE15226 | GEO
| S-EPMC4020184 | biostudies-literature
| S-EPMC4038135 | biostudies-other
| S-EPMC2289817 | biostudies-other
2009-06-22 | GSE7948 | GEO