Unknown

Dataset Information

0

Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.


ABSTRACT: INTRODUCTION:Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. METHODS:Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor ? (TGF?). RESULTS:The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGF? induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. CONCLUSION:We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.

SUBMITTER: van den Akker GG 

PROVIDER: S-EPMC4721917 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.

van den Akker Guus G H GG   Surtel Don A M DA   Cremers Andy A   Richardson Stephen M SM   Hoyland Judith A JA   van Rhijn Lodewijk W LW   Voncken Jan Willem JW   Welting Tim J M TJ  

PloS one 20160121 1


<h4>Introduction</h4>Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and char  ...[more]

Similar Datasets

| S-EPMC4227062 | biostudies-literature
| S-EPMC9108517 | biostudies-literature
| S-EPMC8313173 | biostudies-literature
| S-EPMC3951500 | biostudies-literature
| S-EPMC6919252 | biostudies-literature
| S-EPMC5511600 | biostudies-literature
| S-EPMC7499307 | biostudies-literature
| S-EPMC6417974 | biostudies-literature
| S-EPMC4010482 | biostudies-literature
| S-EPMC4178129 | biostudies-literature