Unknown

Dataset Information

0

Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.


ABSTRACT: Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C?T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor ?B ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the ?-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption.

SUBMITTER: Canalis E 

PROVIDER: S-EPMC4722436 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.

Canalis Ernesto E   Schilling Lauren L   Yee Siu-Pok SP   Lee Sun-Kyeong SK   Zanotti Stefano S  

The Journal of biological chemistry 20151201 4


Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous  ...[more]

Similar Datasets

| S-EPMC5519372 | biostudies-literature
| S-EPMC4269900 | biostudies-literature
| S-EPMC5673271 | biostudies-literature
| S-EPMC5425156 | biostudies-literature
| S-EPMC4037401 | biostudies-literature
| S-EPMC7504254 | biostudies-literature
| S-EPMC8947164 | biostudies-literature
| S-EPMC9223558 | biostudies-literature
| S-EPMC7210890 | biostudies-literature
| S-EPMC8996436 | biostudies-literature