Unknown

Dataset Information

0

Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room.


ABSTRACT: A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69-0.99) and a specificity 0.84 (95% CI 0.58-0.94) with an AUC of 0.93 (95% CI 0.89-1.01). Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85-1.00) and specificity of 0.95 (95% CI 0.74-0.99), and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.

SUBMITTER: Kauppi AM 

PROVIDER: S-EPMC4723089 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room.

Kauppi Anna M AM   Edin Alicia A   Ziegler Ingrid I   Mölling Paula P   Sjöstedt Anders A   Gylfe Åsa Å   Strålin Kristoffer K   Johansson Anders A  

PloS one 20160122 1


A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of inf  ...[more]

Similar Datasets

| S-EPMC3850719 | biostudies-literature
| S-EPMC7324770 | biostudies-literature
| S-EPMC6777842 | biostudies-literature
| S-EPMC3441240 | biostudies-literature
| S-EPMC10733355 | biostudies-literature
| S-EPMC7325725 | biostudies-literature
| S-EPMC8446358 | biostudies-literature
| S-EPMC7998031 | biostudies-literature
| S-EPMC7892361 | biostudies-literature
| S-EPMC6921192 | biostudies-literature