Unknown

Dataset Information

0

Novel Quantum Criticality in Two Dimensional Topological Phase transitions.


ABSTRACT: Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material ?-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality.

SUBMITTER: Cho GY 

PROVIDER: S-EPMC4726365 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel Quantum Criticality in Two Dimensional Topological Phase transitions.

Cho Gil Young GY   Moon Eun-Gook EG  

Scientific reports 20160121


Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic  ...[more]

Similar Datasets

| S-EPMC7210280 | biostudies-literature
| S-EPMC5823914 | biostudies-literature
| S-EPMC4857734 | biostudies-other
| S-EPMC4844751 | biostudies-literature
| S-EPMC3555089 | biostudies-other
| S-EPMC7777038 | biostudies-literature
| S-EPMC3271865 | biostudies-literature
| S-EPMC5849775 | biostudies-literature
| S-EPMC4052715 | biostudies-other
| S-EPMC7314521 | biostudies-literature