Matrix metalloproteinase 12 modulates high-fat-diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity.
Ontology highlight
ABSTRACT: Obesity-induced kidney injury contributes to albuminuria, which is characterized by a progressive decline in renal function leading to glomerulosclerosis and renal fibrosis. Matrix metalloproteinases (MMPs) modulate inflammation and fibrosis by degrading a variety of extracellular matrix and regulating the activities of effector proteins. Abnormal regulation of MMP-12 expression has been implicated in abdominal aortic aneurysm, atherosclerosis, and emphysema, but the underlying mechanisms remain unclear. The present study examined the function of MMP-12 in glomerular fibrogenesis and inflammation using apo E(-/-) or apo E(-/-)MMP-12(-/-) mice and maintained on a high-fat-diet (HFD) for 3, 6, or 9 months. MMP-12 deletion reduced glomerular matrix accumulation, and downregulated the expression of NADPH oxidase 4 and the subunit-p67(phox), indicating the inhibition of renal oxidative stress. In addition, the expression of the inflammation-associated molecule MCP-1 and macrophage marker-CD11b was decreased in glomeruli of apo E(-/-)MMP-12(-/-) mice fed HFD. MMP-12 produced by macrophages infiltrating into glomeruli contributed to the degradation of collagen type IV and fibronectin. Crescent formation due to renal oxidative stress in Bowman's space was a major factor in the development of fibrogenesis and inflammation. These results suggest that regulating MMP-12 activity could be a therapeutic strategy for the treatment of crescentic glomerulonephritis and fibrogenesis.
SUBMITTER: Niu H
PROVIDER: S-EPMC4731752 | biostudies-literature | 2016 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA