Molecular Basis of the Divergent Immunogenicity of Two Pediatric Tick-Borne Encephalitis Virus Vaccines.
Ontology highlight
ABSTRACT: Studies evaluating the immunogenicity of two pediatric tick-borne encephalitis virus (TBEV) vaccines have reported contradictory results. These vaccines are based on two different strains of the European TBEV subtype: FSME-Immun Junior is based on the Neudörfl (Nd) strain, whereas Encepur Children is based on the Karlsruhe (K23) strain. The antibody (Ab) response induced by these two vaccines might be influenced by antigenic differences in the envelope (E) protein, which is the major target of neutralizing antibodies. We used an established hybrid virus assay platform to compare the levels of induction of neutralizing antibodies against the two vaccine virus strains in children aged 1 to 11 years who received two immunizations with FSME-Immun Junior or Encepur Children. The influence of amino acid differences between the E proteins of the Nd and K23 vaccine strains was investigated by mutational analyses and three-dimensional computer modeling. FSME-Immun Junior induced 100% seropositivity and similar neutralizing antibody titers against hybrid viruses containing the TBEV E protein of the two vaccine strains. Encepur Children induced 100% seropositivity only against the hybrid virus containing the E protein of the homologous K23 vaccine strain. Antibody responses induced by Encepur Children to the hybrid virus containing the E protein of the heterologous Nd strain were substantially and significantly (P < 0.001) lower than those to the K23 vaccine strain hybrid virus. Structure-based mutational analyses of the TBEV E protein indicated that this is due to a mutation in the DI-DII hinge region of the K23 vaccine strain E protein which may have occurred during production of the vaccine seed virus and which is not present in any wild-type TBE viruses.Our data suggest that there are major differences in the abilities of two European subtype pediatric TBEV vaccines to induce antibodies capable of neutralizing heterologous TBEV strains. This is a result of a mutation in the DI-DII hinge region of the E protein of the K23 vaccine virus strain used to manufacture Encepur Children which is not present in the Nd strain used to manufacture FSME-Immun Junior or in any other known naturally occurring TBEVs.
SUBMITTER: Beck Y
PROVIDER: S-EPMC4734018 | biostudies-literature | 2016 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA