Unknown

Dataset Information

0

Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein.


ABSTRACT: The C-terminal amphipathic helix of the influenza A M2 protein plays a critical cholesterol-dependent role in viral budding. To provide atomic-level detail on the impact cholesterol has on the conformation of M2 protein, we spin-labeled sites right before and within the C-terminal amphipathic helix of the M2 protein. We studied the spin-labeled M2 proteins in membranes both with and without cholesterol. We used a multipronged site-directed spin-label electron paramagnetic resonance (SDSL-EPR) approach and collected data on line shapes, relaxation rates, accessibility of sites to the membrane, and distances between symmetry-related sites within the tetrameric protein. We demonstrate that the C-terminal amphipathic helix of M2 populates at least two conformations in POPC/POPG 4:1 bilayers. Furthermore, we show that the conformational state that becomes more populated in the presence of cholesterol is less dynamic, less membrane buried, and more tightly packed than the other state. Cholesterol-dependent changes in M2 could be attributed to the changes cholesterol induces in bilayer properties and/or direct binding of cholesterol to the protein. We propose a model consistent with all of our experimental data that suggests that the predominant conformation we observe in the presence of cholesterol is relevant for the understanding of viral budding.

SUBMITTER: Kim SS 

PROVIDER: S-EPMC4734095 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein.

Kim Sangwoo S SS   Upshur Mary Alice MA   Saotome Kei K   Sahu Indra D ID   McCarrick Robert M RM   Feix Jimmy B JB   Lorigan Gary A GA   Howard Kathleen P KP  

Biochemistry 20151130 49


The C-terminal amphipathic helix of the influenza A M2 protein plays a critical cholesterol-dependent role in viral budding. To provide atomic-level detail on the impact cholesterol has on the conformation of M2 protein, we spin-labeled sites right before and within the C-terminal amphipathic helix of the M2 protein. We studied the spin-labeled M2 proteins in membranes both with and without cholesterol. We used a multipronged site-directed spin-label electron paramagnetic resonance (SDSL-EPR) ap  ...[more]

Similar Datasets

| S-EPMC2746938 | biostudies-other
| S-EPMC3164293 | biostudies-literature
| S-EPMC7035486 | biostudies-literature
| S-EPMC3360003 | biostudies-literature
| S-EPMC4816700 | biostudies-literature
| S-EPMC4965473 | biostudies-literature
| S-EPMC2782030 | biostudies-literature
| S-EPMC5724280 | biostudies-literature
| S-EPMC3137082 | biostudies-literature
| S-EPMC4733983 | biostudies-literature