ABSTRACT: In schizophrenia, working memory deficits appear to reflect abnormalities in the generation of gamma oscillations in the dorsolateral prefrontal cortex. The generation of gamma oscillations requires the phasic excitation of inhibitory parvalbumin-containing interneurons. Thus, gamma oscillations depend, in part, on the number of synaptic glutamate receptors on parvalbumin interneurons. However, little is known about the molecular factors that regulate glutamate receptor-mediated excitation of parvalbumin interneurons in schizophrenia.To quantify in individuals with schizophrenia the expression of immediate early genes (NARP, ARC, and SGK1) regulating glutamate synaptic neurotransmission.Postmortem brain specimens (n?=?206) were obtained from individuals with schizophrenia, bipolar disorder, or major depressive disorder and from well-matched healthy persons (controls). For a study of brain tissue, quantitative polymerase chain reaction, in situ hybridization, or microarray analyses were used to measure transcript levels in the dorsolateral prefrontal cortex at gray matter, laminar, and cellular levels of resolutions. This study was conducted between January 1, 2013, and November 30, 2014.Expression levels for NARP, ARC, and SGK1 messenger RNA (mRNA) were compared between specimens from individuals with schizophrenia and controls. Diagnostic specificity was assessed by quantifying NARP mRNA levels in specimens from individuals with mood disorders.By quantitative polymerase chain reaction, levels of NARP mRNA were significantly lower by 25.6% in specimens from individuals with schizophrenia compared with the controls (mean [SD], 0.036 [0.018] vs 0.049 [0.015]; F1,114?=?21.0; P?