Project description:We detected antibodies against influenza D in 80.2% of the cattle sampled in Luxembourg in 2016, suggesting widespread virus circulation throughout the country. In swine, seroprevalence of influenza D was low but increased from 0% to 5.9% from 2012 to 2014-2015.
Project description:Because swine influenza virus infection is seldom diagnosed in humans, its frequency might be underestimated. We report a immunocompromised hematologic patient with swine influenza A(H3N2) virus in 2014 in Italy. Local pigs were the source of this human infection.
Project description:Hepatitis E virus (HEV) is an important public health concern in many developing countries and it occurs in sporadic forms in industrialized areas. With the discovery of swine HEV in pigs, which is genetically closely related to human HEV, hepatitis E is considered to be a zoonotic disease. To investigate the circulation of HEV within a distinct area of Lombardy region (Northern Italy), 17 pig farms were subjected to monitoring study by collection of fresh stool samples each represented by ground-pooled specimens. In particular, three distinct types of breeding farms were focused, represented by farrow to weaning, farrow to finish and fattening farms, respectively. Epidemiological data confirm that in Europe the seroprevalence in pigs, more than 9 month of age, ranges from 51.4 to 75%, while in 3-9 months fatteners is about 38%. In France and Italy, the positivity among farms is respectively 30 and 97.4% and the seroprevalence in Italy is 50.2%. Since HEV viremia was typically observed in the early period of life in swine, faeces were collected in boxes containing weaning pigs. For the study, 183 stool samples were collected and amplifications were performed with universal primers specific for the ORF2 region of genome. Twentyeight samples resulted positive to HEV RNA and genotyping demonstrated that they were closely related to HEV strains belonging to genotype 3 and circulating in Europe. Comparison with reference strains from GenBank excluded their similarity to genotype 1, 2 or 4 confirming that genotype 3 strains are circulating in Europe. Since it was demonstrated that swine act as a reservoir for HEV, and since many strains into HEV genotype 3 share a strong molecular similarity to human HEV, it was important to detect the presence of HEV in a restricted area with a very high density of pigs.
Project description:The present study focused on the detection and genetic characterisation of 5' untranslated region (5'UTR) and E2 gene of classical swine fever virus (CSFV, family Flaviviridae, genus Pestivirus) from bovine population of the northeastern region of India. A total of 134 cattle serum samples were collected from organised cattle farms and were screened for CSFV antigen with a commercial antigen capture enzyme linked immunosorbent assay (Ag-ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). A total of 10 samples were positive for CSFV antigen by ELISA, while all of them were positive in PCR for 5'UTR region. Full length E2 region of CSFV were successfully amplified from two positive samples and used for subsequent phylogenetic analysis and determination of protein 3D structure which showed similarity with reported CSFV isolate from Assam of sub-genogroup 2.1, with minor variations in protein structure.
Project description:In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.
Project description:In 2004, 803 rural Iowans from the Agricultural Health Study were enrolled in a 2-year prospective study of zoonotic influenza transmission. Demographic and occupational exposure data from enrollment, 12-month, and 24-month follow-up encounters were examined for association with evidence of previous and incident influenza virus infections. When proportional odds modeling with multivariable adjustment was used, upon enrollment, swine-exposed participants (odds ratio [OR] 54.9, 95% confidence interval [CI] 13.0-232.6) and their nonswine-exposed spouses (OR 28.2, 95% CI 6.1-130.1) were found to have an increased odds of elevated antibody level to swine influenza (H1N1) virus compared with 79 nonexposed University of Iowa personnel. Further evidence of occupational swine influenza virus infections was observed through self-reported influenza-like illness data, comparisons of enrollment and follow-up serum samples, and the isolation of a reassortant swine influenza (H1N1) virus from an ill swine farmer. Study data suggest that swine workers and their nonswine-exposed spouses are at increased risk of zoonotic influenza virus infections.
Project description:The discovery of microRNAs (miRNAs) is a remarkable breakthrough in the field of life science, and they are important actors which regulate gene expression in diverse cellular processes. Recently, several reports indicated that miRNAs can also target viruses and regulate virus replication. Here we discovered 36 pig-encoded miRNAs and 22 human-encoded miRNAs which have putative targets in swine influenza virus (SIV) and Swine-Origin 2009 A/H1N1 influenza virus (S-OIV) genes respectively. Interestingly, the putative interactions of ssc-miR-124a, ssc-miR-136 and ssc-miR-145 with their SIV target genes had been found to be maintained almost throughout all of the virus evolution. Enrichment analysis of previously reported miRNA gene expression profiles revealed that three miRNAs are expressed at higher levels in human lung or trachea tissue. The hsa-miR-145 and hsa-miR-92a putatively target the HA gene and hsa-miR-150 putatively targets the PB2 gene. Analysis results based on the location distribution from which virus was isolated and sequence conservation imply that some putative miRNA-mediated host-virus interactions may characterize the location-specificity.
Project description:Point-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020. The LAMP assay was incubated at 65 °C for 30 min, with the fluorescent signal read every 20 s. The assay's limit of detection (LOD) was 20 M gene copies for direct LAMP of the matrix gene standard, and 100 M gene copies when using spiked extraction kits. The LOD was 1000 M genes when using cell culture samples. Detection in clinical samples showed a sensitivity of 94.3% and a specificity of 94.9%. These results show that the influenza M gene RT-LAMP assay can detect the presence of IAV in research laboratory conditions. With the appropriate fluorescent reader and heat block, the assay could be quickly validated as a low-cost, rapid, IAV-S screening tool for use on farms or in clinical diagnostic labs.
Project description:A low-cost, label-free, ultra-sensitive electric immunoassay is developed for the detection of swine influenza virus (SIV) H1N1. The assay is based on the excellent electrical properties of single-walled carbon nanotubes (SWCNTs). Antibody-virus complexes influence the conductance of underlying SWCNT thin film, which has been constructed by facile layer-by-layer self-assembly. The basic steps of conventional immunoassay are performed followed by the electric characterization of immunochips at the last stage. The resistance of immunochips tends to increase upon surface adsorption of macromolecules such as poly-L-lysine, anti-SIV antibodies, and SIVs during the assay. The resistance shift after the binding of SIV with anti-SIV antibody is normalized with the resistances of bare devices. The sensor selectivity tests are performed with non-SIVs, showing the normalized resistance shift of 12% as a background. The detection limit of 180 TCID(50)/ml of SIV is obtained suggesting a potential application of this assay as point-of-care detection or monitoring system. This facile CNT-based immunoassay also has the potential to be used as a sensing platform for lab-on-a-chip system.
Project description:Influenza D virus (IDV) has been increasingly reported all over the world. Cattle are considered the major viral reservoir. Based on the hemagglutinin-esterase (HEF) gene, three main genetic and antigenic clusters have been identified: D/OK distributed worldwide, D/660 detected only in the USA and D/Japan in Japan. Up to 2017, all the Italian IDV isolates belonged to the D/OK genetic cluster. From January 2018 to May 2019, we performed virological surveillance for IDV from respiratory outbreaks in 725 bovine farms in Northern Italy by RT-PCR. Seventy-four farms were positive for IDV. A full or partial genome sequence was obtained from 29 samples. Unexpectedly, a phylogenetic analysis of the HEF gene showed the presence of 12 strains belonging to the D/660 cluster, previously unreported in Europe. The earliest D/660 strain was collected in March 2018 from cattle imported from France. Moreover, we detected one viral strain with a reassortant genetic pattern (PB2, PB1, P42, HEF and NP segments in the D/660 cluster, whilst P3 and NS segments in the D/OK cluster). These results confirm the circulation of IDV in the Italian cattle population and highlight the need to monitor the development of the spreading of this influenza virus in order to get more information about the epidemiology and the ecology of IDV viruses.