Unknown

Dataset Information

0

Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.


ABSTRACT: Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

SUBMITTER: Vallabhapurapu SD 

PROVIDER: S-EPMC4741459 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

Vallabhapurapu Subrahmanya D SD   Blanco Víctor M VM   Sulaiman Mahaboob K MK   Vallabhapurapu Swarajya Lakshmi SL   Chu Zhengtao Z   Franco Robert S RS   Qi Xiaoyang X  

Oncotarget 20151001 33


Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on c  ...[more]

Similar Datasets

| S-EPMC7288202 | biostudies-literature
| S-EPMC8561630 | biostudies-literature
| S-EPMC8246268 | biostudies-literature
| S-EPMC3703462 | biostudies-other
| S-SCDT-EMBOJ-2021-107915 | biostudies-other
| S-EPMC6083039 | biostudies-literature
| S-EPMC2777924 | biostudies-literature
| S-EPMC2781682 | biostudies-literature
| S-EPMC3491704 | biostudies-literature
| S-EPMC8455468 | biostudies-literature