The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L.
Ontology highlight
ABSTRACT: Nasopharyngeal carcinoma (NPC) is a malignancy with poor prognosis that is endemic to Southeast Asia. We profiled microRNAs (miRNAs) of NPCs using microarrays and confirmed the results by quantitative RT-PCR. The results revealed that seven miRNAs were significantly up-regulated, and six miRNAs were down-regulated, in NPC tissues relative to noncancerous nasopharyngeal epithelia (NNE). Expression of miR-497 was also significantly reduced in the plasma of NPC patients relative to the plasma of noncancerous control patients. The concordant down-regulation of miR-497 in tissues and plasma suggested that miR-497 could be used as a diagnostic biomarker for NPC. Functional analyses of the effect of miR-497 on cancer phenotypes revealed that transfection of miR-497 mimic into NPC cells suppressed cell growth and migration and induced apoptosis. Subcutaneous xenografts of transfected cells in nude mice demonstrated that miR-497 significantly inhibited tumor growth. Two potential targets of miR-497, ANLN (anillin, actin-binding protein) and HSPA4L (heat shock 70 kDa protein 4-like), both of which were overexpressed in NPC tissues, were negatively regulated by miR-497 mimic in NPC cell lines. Silencing of ANLN and HSPA4L suppressed cell proliferation and migration and induced apoptosis in NPC cells. Our findings indicate that miR-497 is a potent tumor suppressor that inhibits cancer phenotypes by targeting ANLN and HSPA4L in NPC.
SUBMITTER: Wang S
PROVIDER: S-EPMC4742149 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA