High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes.
Ontology highlight
ABSTRACT: Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m(-2) is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.
SUBMITTER: Im H
PROVIDER: S-EPMC4742963 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA