Unknown

Dataset Information

0

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation.


ABSTRACT: Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca(2+)-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca(2+) signals representing Ca(2+) influx through single TRPA1 channels, which we called "TRPA1 sparklets." TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca(2+) entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca(2+) channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca(2+)-sensitive K(+) channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca(2+) influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.

SUBMITTER: Sullivan MN 

PROVIDER: S-EPMC4745898 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation.

Sullivan Michelle N MN   Gonzales Albert L AL   Pires Paulo W PW   Bruhl Allison A   Leo M Dennis MD   Li Wencheng W   Oulidi Agathe A   Boop Frederick A FA   Feng Yumei Y   Jaggar Jonathan H JH   Welsh Donald G DG   Earley Scott S  

Science signaling 20150106 358


Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca(2+)-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca(2+) signals representing Ca(2+) influx through single  ...[more]

Similar Datasets

| S-EPMC2966339 | biostudies-other
| S-EPMC3524345 | biostudies-literature
| S-EPMC1352308 | biostudies-literature
| S-EPMC8352588 | biostudies-literature
| S-EPMC2727937 | biostudies-literature
| S-EPMC5856474 | biostudies-literature
| S-EPMC2633278 | biostudies-literature
| S-EPMC6493086 | biostudies-literature
| S-EPMC8549818 | biostudies-literature
| S-EPMC4640345 | biostudies-literature