Redifferentiation of expanded human islet ? cells by inhibition of ARX.
Ontology highlight
ABSTRACT: Ex-vivo expansion of adult human islet ? cells has been evaluated for generation of abundant insulin-producing cells for transplantation; however, lineage-tracing has demonstrated that this process results in ?-cell dedifferentiation. Redifferentiation of ?-cell-derived (BCD) cells can be achieved using a combination of soluble factors termed Redifferentiation Cocktail (RC); however, this treatment leads to redifferentiation of only a fraction of BCD cells. This study aimed at improving redifferentiation efficiency by affecting the balance of islet progenitor-cell transcription factors activated by RC treatment. Specifically, RC treatment induces the transcription factors PAX4 and ARX, which play key roles in directing pancreas endocrine progenitor cells into the ?/? or ?/PP developmental pathways, respectively. Misactivation of ARX in RC-treated BCD cells may inhibit their redifferentiation into ? cells. Blocking ARX expression by shRNA elevated insulin mRNA levels 12.8-fold, and more than doubled the number of insulin-positive BCD cells. ARX inhibition in expanded ?-cell-derived cells treated with RC did not cause their transdifferentiation into insulin-producing cells. The combination of RC and ARX shRNA treatment may facilitate the generation of abundant insulin-producing cells for transplantation into patients with type 1 diabetes.
SUBMITTER: Friedman-Mazursky O
PROVIDER: S-EPMC4746595 | biostudies-literature | 2016 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA