Unknown

Dataset Information

0

Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.


ABSTRACT: Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg(2+) ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg(2+) ion or multiple Na(+) ions, one of which is also in a bridging coordination pattern. In the case of a single Mg(2+) ion bound in the active site, the Mg(2+) ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2'). As the reaction proceeds, the Mg(2+) ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2'. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis.

SUBMITTER: Lee TS 

PROVIDER: S-EPMC4747252 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis.

Lee Tai-Sung TS   Wong Kin-Yiu KY   Giambasu George M GM   York Darrin M DM  

Progress in molecular biology and translational science 20130101


Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg(2+) ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns th  ...[more]

Similar Datasets

| S-EPMC2610685 | biostudies-literature
| S-EPMC2948978 | biostudies-literature
| S-EPMC4008931 | biostudies-literature
| S-EPMC2535817 | biostudies-literature
| S-EPMC2553840 | biostudies-literature
| S-EPMC3230267 | biostudies-literature
| S-EPMC5938730 | biostudies-literature
| S-EPMC6520378 | biostudies-literature
| S-EPMC3071246 | biostudies-literature
| S-EPMC11367406 | biostudies-literature