Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells.
Ontology highlight
ABSTRACT: Stem-cell-based therapies are regarded as promising treatments for neurological disorders, and adipose-derived stem cells (ASCs) are a feasible source of clinical application of stem cell. Recent studies have shown that stem cells have a therapeutic potential for use in the treatment of various illnesses through paracrine action. To examine the effects of cell components of ASCs on neural stem cells (NSCs), we treated cell-free extracts of ASCs (CFE-ASCs) containing various components with brain-derived NSCs. To elucidate the effects of CFE-ASCs in NSC proliferation, we treated mouse subventricular zone-derived cultured NSCs with various doses of CFE-ASCs. As a result, CFE-ASCs were found to induce the proliferation of NSCs under conditions of growth factor deprivation in a dose-dependent manner (p<0.01). CFE-ASCs increase the expression of neuron and astrocyte differentiation markers including Tuj-1 (p<0.05) and glial fibrillary acidic protein (p<0.01) without altering the cell's fate in differentiating NSCs. In addition, treatment with CFE-ASCs induces an increase in neurite numbers (p<0.01) and lengths of NSCs (p<0.05). Furthermore, CFE-ASCs rescue the hydrogen peroxide-induced reduction of NSCs' viability (p<0.05) and neurite branching (p<0.01). Findings from our study indicate that CFE-ASCs support the survival, proliferation and differentiation of NSCs accompanied with neurite outgrowth, suggesting that CFE-ASCs can modulate neurogenesis in the central nervous system.
SUBMITTER: Ban JJ
PROVIDER: S-EPMC4747593 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA