Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.
Ontology highlight
ABSTRACT: An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.
SUBMITTER: Jiang T
PROVIDER: S-EPMC4749344 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA