Project description:Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PV). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2 mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell-type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF-predisposition genes, suggesting combinatorial risk for AF-genesis. Our data further reveals that PV and LA Pitx2 mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF-predisposition in the PV of humans.
Project description:Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Project description:Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PVs). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2-mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF predisposition genes, suggesting combinatorial risk for AF genesis. Our data further reveal that PV and LA Pitx2-mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF predisposition in the PVs of humans.
Project description:Background: Genomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess whether this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation. Methods: mRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAA) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n=83) or in LAA cardiomyocytes (n=52), and combined with clinical parameters to predict AF recurrence. Literature suggests bone morphogenetic protein 10 (BMP10) as a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with eleven cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients. Results: Reduced cardiomyocyte PITX2 concentrations, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, qPCR and Western blotting confirmed BMP10 as one of most PITX2-repressed atrial genes. Left atrial size (hazard ratio per mm increase, HR [95%CI] 1.055 [1.028, 1.082], non-paroxysmal AF (HR 1.672 [1.206, 2.318]) and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed eleven other cardiovascular biomarkers in predicting recurrent AF. Conclusions: Reduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted, atrial protein BMP10 identify patients at risk of recurrent AF after ablation.
Project description:Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently under study. PITX2 protein regulates right-left differentiation of the embryonic heart, thorax and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers. Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the effectiveness of anti-arrhythmic drug therapy.
Project description:BACKGROUNDGenomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODSmRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTSReduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONSReduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATIONClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDINGBritish Heart Foundation, European Union (H2020), Leducq Foundation.
Project description:Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Project description:Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.
Project description:BackgroundAs observed in recent genetic studies, PITX2 is one of the most popular genes with atrial fibrillation; single nucleotide polymorphism (rs2200733) at chromosome 4q25 (near PITX2) is found to be strongly associated with atrial fibrillation, but it has a difference among Chinese Han population. The basic aim of conducting this study is to find the correlation between PITX2 gene polymorphism and the risk of atrial fibrillation and to identify the possibility for early diagnosis of silent atrial fibrillation and high-risk atrial fibrillation.MethodsThe study included 98 cases of atrial fibrillation patients and 88 non-atrial fibrillation patients in Affiliated Hospital of Yangzhou University were enrolled in a case-control study. The single nucleotide polymorphism of rs2200733 at 4q25 near PITX2 was genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis.ResultsA total of 98 patients with atrial fibrillation were genotyped, and the following frequencies were included in genotype percentages (44.9%, 50%, and 5.1%) while distribution of significant single nucleotide polymorphism rs2200733 consisted (29.55%, 53.41%, and 17.05%) which showed (χ2 = 9.159, P =.01). There was no significant difference in TC genotype frequency (P =.642), frequency of T allele (χ2 = 7.447, P =.006), and T allele was 1.806 times that of the control group (odds ratio = 1.806, 95% CI = 1.179-2.766, P =.006). According to logistic regression analysis, following results were concluded for TC genotype (odds ratio = 3.128, 95% CI = 1.053-9.287, P =.04), or TT genotype (odds ratio = 5.077, 95% CI = 1.653-15.595, P =.005) increased the risk of atrial fibrillation.ConclusionsThe genotype and allele frequency distribution of rs2200733 (T/C) near PITX2 is different in the atrial fibrillation group and the control group. The T allele is a risk factor for atrial fibrillation. Compared with the CC genotype, the TT genotype increased the risk of atrial fibrillation.
Project description:Atrial fibrillation (AF) is the most common sustained arrhythmia characterized by rapid and multiple irregular excitations within the atria. AF is associated with serious morbidity and increased mortality, and its prevalence is prospected to increase as society ages. The limited therapeutic efficacy of AF treatment as well as its high socioeconomic burden makes AF a major clinical challenge. Despite our expanding knowledge of individual proteins and pathways involved in the complex pathophysiology of atrial fibrillation (AF), an unbiased overview of proteins and functionally enriched biological processes as well as their crosstalk is lacking. Here, we performed an explorative proteomics analysis to reveal the global abundance of proteins in cardiac tissue of patients, and deciphered functionally grouped gene ontologies (GO) to uncover a perspective of the disease biology driving or driven by AF. A total of 2703 proteins were identified by liquid chromatography coupled to tandem mass spectrometry. Among them, 150 proteins (accounting for 5.6% of 2703) had a significantly altered abundance (100 proteins increased and 50 decreased) in AF. A significant biological connection was found between those (protein-protein interaction enrichment p-value=1.0e-16). GO enrichment analysis showed that these 150 proteins were mainly located in extracellular/cytoplasmic vesicles, mitochondrion, and cytoskeletal compartments. Correspondingly, the 100 proteins increased in AF were significantly enriched in the GO terms related to immune system, metabolic process, iron process, ECM disassembly, mitochondrial translation and apoptotic signaling. Partially clustered proteins with dense functional link were found in immune system and metabolic process, and were respectively annotated in neutrophil degranulation, and oxoacid metabolic process coupled to the subunits of mitochondrial dehydrogenase NADH. Those processes enriched in AF had crosstalk via the proteins involved in neutrophil degranulation. Selected proteins such as LCN2 (neutrophil degranulation), CA3 (immune system), NDUFS2 (complex I) and MYH10 (actin motor protein) were validated by western blot or qPCR in an independent cohort. The 50 proteins decreased in AF were collectively enriched in vesicle-mediated transport and actin filament-based movement. We demonstrate that important biological processes underlying persistent AF as well as their crosstalk via the components of neutrophil degranulation. Our study provides a novel insight for a more efficient targeting strategy for AF treatment.