The Meristogram: a neglected tool for acanthocephalan systematics.
Ontology highlight
ABSTRACT: BACKGROUND:The hooks of the acanthocephalan proboscis exhibit serial variation in size and shape. The Meristogram was developed by Huffman and Bullock (1975) to provide a graphical representation of this positional variation in hook morphology. Initial studies demonstrated the ability of the Meristogram to discriminate species within the genera Echinorhynchus and Pomphorhynchus (Huffman and Bullock 1975, Huffman and Nickol 1978, Gleason and Huffman 1981). However, the reliability of the method for taxonomic work was questioned by Shostak et al. (1986) after they found intra-specific variation in two Echinorhynchus species. Uncertainty about the usefulness of the Meristogram and the absence of a readily available software implementation of the algorithm, might explain why this abstract proboscis character has yet to be adopted by acanthocephalan systematists. NEW INFORMATION:The Meristogram algorithm was implemented in the R language and a simple graphical user interface created to facilitate ease of use (the software is freely available from https://github.com/WaylandM/meristogram). The accuracy of the algorithm's formula for calculating hook cross-sectional area was validated by data collected using a digitizing tablet. Meristograms were created from data in public respositories for eight Echinorhynchus taxa: E. bothniensis, E. 'bothniensis', E. gadi spp. A, B and I, E. brayi, E. salmonis and E. truttae. In this preliminary analysis, the meristogram differentiated E. bothniensis, E. brayi, E. gadi sp. B, E. salmonis and E. truttae from each other, and from the remaining taxa in this study, but independent data will be required for validation. Sample sizes for E. 'bothniensis' and E. gadi spp. A and I were too small to identify diagnostic features with any degree of confidence. Meristogram differences among the sibling species of the E. gadi and E. bothniensis groups suggest that the 'intra-specfic' variation in meristogram previously reported for some Echinorhynchus taxa, may have actually represented morphological divergence between unrecognized cryptic species. Hierarchical clustering of taxa based on Meristogram data yielded dendrograms that were largely concordant with phylogenetic relationships inferred from DNA sequence data, indicating the presence of a strong phylogenetic signal.
SUBMITTER: Wayland MT
PROVIDER: S-EPMC4759448 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA