Unknown

Dataset Information

0

Reinforcement Learning Trees.


ABSTRACT: In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings.

SUBMITTER: Zhu R 

PROVIDER: S-EPMC4760114 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reinforcement Learning Trees.

Zhu Ruoqing R   Zeng Donglin D   Kosorok Michael R MR  

Journal of the American Statistical Association 20150416 512


In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later spli  ...[more]

Similar Datasets

| S-EPMC3247813 | biostudies-other
| S-EPMC4909278 | biostudies-literature
| S-EPMC7482564 | biostudies-literature
| S-EPMC7711250 | biostudies-literature
| S-EPMC2645553 | biostudies-other
| S-EPMC3390186 | biostudies-literature
| S-EPMC2783795 | biostudies-literature
| S-EPMC4105407 | biostudies-literature
| S-EPMC6644574 | biostudies-literature
| S-EPMC6403348 | biostudies-literature