Project description:Rearrangements of the anaplastic lymphoma kinase (ALK) gene occur infrequently in non-small-cell lung cancer (NSCLC), but provide an important paradigm for oncogene-directed therapy in this disease. Crizotinib, an orally bioavailable inhibitor of ALK, provides significant benefit for patients with ALK-positive (ALK+) NSCLC in association with characteristic, mostly mild, toxic effects, and this drug has been approved by the FDA for clinical use in this molecularly defined subgroup of lung cancer. Many new ALK inhibitors are being developed and understanding the challenges of determining and addressing the adverse effects that are likely to be ALK specific, while maximizing the time of benefit on targeted agents, and understanding the mechanisms that underlie drug resistance will be critical in the future for informing the optimal therapy of ALK+ NSCLC.
Project description:Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Project description:The vast range of genetic diversity contributes to a wonderful array of human traits and characteristics. Unfortunately, a consequence of this genetic diversity is large variability in drug response between people, meaning that no single medication is safe and effective in everyone. The debilitating and sometimes deadly consequences of adverse drug reactions (ADRs) are a major and unmet problem of modern medicine. Pharmacogenomics can uncover associations between genetic variation and drug safety and has the potential to predict ADRs in individual patients. Here we review pharmacogenomic successes leading to changes in clinical practice, as well as clinical areas probably to be impacted by pharmacogenomics in the near future. We also discuss some of the challenges, and potential solutions, that remain for the implementation of pharmacogenomic testing into clinical practice for the significant improvement of drug safety.
Project description:The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Project description:BackgroundThe State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families.Methodology/principal findingsThis study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species.Conclusions/significanceThe study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity.
Project description:Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Project description:In this review, we discuss the current state of population genome programs (PGPs) conducted in the Middle East and North African (MENA) region. This region has high prevalence of genetic diseases and significant health challenges as well as being a significantly underrepresented population in public genetic databases. The majority of ongoing PGPs represent regions in Europe, North and South America, South Asia, Australia, and Africa, with little to no descriptive information highlighted only on the MENA Region when it comes to genome programs databases, outcomes, or the challenges that MENA region countries may face establishing their own national programs. This review has identified 6 PGPs currently underway in the MENA region, namely in the Kingdom of Saudi Arabia, Qatar, Egypt, the United Arab Emirates, Bahrain, and Iran. Due to the rapidly growing involvement of the MENA region in national-scale genomic data collection, an increase in representation in public genetic databases is to be expected to occur in the near future. Whilst significant progress is being made in some MENA countries, future initiatives as well as ongoing programs will be facing several challenges related to collaboration, finance, infrastructure and institutional data access, data analysis, sustainability, health records, and biobanks. The review also reiterates the need for ensuring ethical and regulated genomic initiatives which can drive developments in personalized medicine treatments to improve patient prognosis and quality of life.
Project description:Collaborations between the Wlodawer and Skalka laboratories have covered a period of almost 30 years. During that time our groups have co-authored 18 publications, including several much cited journal articles, book chapters, and scholarly reviews. It has therefore been most rewarding for us to share enthusiasm, insights, and expertise with our Frederick colleagues over the years, and also to enjoy lasting friendships.
Project description:Observational epidemiological studies have associated plasma lipid concentrations with risk for coronary heart disease (CHD), but these studies cannot distinguish cause from mere correlation. Human genetic studies, when considered with the results of randomized controlled trials of medications, can potentially shed light on whether lipid biomarkers are causal for diseases. Genetic analyses and randomized trials suggest that low-density lipoprotein is causal for CHD, whereas high-density lipoprotein is not. Surprisingly, human genetic evidence suggests that lipoprotein(a) and triglyceride-rich lipoproteins causally contribute to CHD. Gene variants leading to higher levels of plasma apolipoprotein B-containing lipoproteins [low-density lipoprotein, triglyceride-rich lipoproteins, or lipoprotein(a)] consistently increase risk for CHD. For triglyceride-rich lipoproteins, the most compelling evidence revolves around lipoprotein lipase and its endogenous facilitator (APOA5 [apolipoprotein A-V]) and inhibitory proteins (APOC3 [apolipoprotein C-III], ANGPTL4 [angiopoietin like 4]). Combined, these genetic results anticipate that, beyond low-density lipoprotein, pharmacological lowering of triglyceride-rich lipoproteins or lipoprotein(a) will reduce risk for CHD, but this remains to be proven through randomized controlled trials.