Unknown

Dataset Information

0

Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology.


ABSTRACT: The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer's disease. However, the study of microglial proliferation in Alzheimer's disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer's disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer's-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-? plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-? plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer's disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer's disease.

SUBMITTER: Olmos-Alonso A 

PROVIDER: S-EPMC4766375 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7212500 | biostudies-literature
| S-EPMC6794948 | biostudies-literature
| S-EPMC5191865 | biostudies-other
| S-EPMC7402118 | biostudies-literature
| S-EPMC6704256 | biostudies-literature
| S-EPMC8732962 | biostudies-literature
| S-EPMC5992183 | biostudies-literature
| S-EPMC8130534 | biostudies-literature
| S-SCDT-EMBOJ-2021-108791 | biostudies-other
2023-09-28 | GSE227223 | GEO