Unknown

Dataset Information

0

The SWI/SNF BAF-A complex is essential for neural crest development.


ABSTRACT: Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome.

SUBMITTER: Chandler RL 

PROVIDER: S-EPMC4769935 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The SWI/SNF BAF-A complex is essential for neural crest development.

Chandler Ronald L RL   Magnuson Terry T  

Developmental biology 20160122 1


Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, mono  ...[more]

Similar Datasets

| S-EPMC5540894 | biostudies-literature
| S-EPMC9713712 | biostudies-literature
| S-SCDT-10_15252-EMBJ_2022110595 | biostudies-other
| S-EPMC8016319 | biostudies-literature
| S-EPMC2774848 | biostudies-literature
| S-EPMC2585832 | biostudies-other
| S-EPMC6698386 | biostudies-literature
| S-EPMC5285474 | biostudies-literature
2021-03-05 | GSE153121 | GEO
| S-EPMC7820627 | biostudies-literature