Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice.
Ontology highlight
ABSTRACT: Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones.
SUBMITTER: Sheehan MJ
PROVIDER: S-EPMC4777540 | biostudies-literature | 2016 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA